Real-Time Diagnosis and Repair of Faults of Robot Control Software

  • Gerald Steinbauer
  • Martin Mörth
  • Franz Wotawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


Faults in hardware and software are not totally avoidable not even if the components are carefully designed, implemented and tested. In this paper we present a solution for detection, localization and repair of faults in the control software for autonomous mobile robots. The presented diagnosis system uses model-based diagnosis for fault detection and localization. Furthermore, we present a method which enables the robot control software to recover from located faults. The novelty of our approach is that fault localization and repair takes place at runtime. Moreover, we present experimental results of the proposed diagnosis system obtained in the RoboCup Middle-Size scenario.


Mobile Robot Fault Detection Robot Control Control Software Diagnosis System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson, J., Murphy, R.R.: Reliability Analysis of Mobile Robot. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA 2003, Taipei, Taiwan. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Williams, B.C., Nayak, P., Muscettola, N.: Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence 103(1-2), 5–48 (1998)MATHCrossRefGoogle Scholar
  3. 3.
    Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Artificial Intelligence 111(2), 3–39 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE Robotics & Automation Magazine 11(2), 56 (2004)CrossRefGoogle Scholar
  5. 5.
    Murphy, R.R., Hershberger, D.: Classifying and recovering from sensing failures in autonomous mobile robots. In: AAAI/IAAI, vol. 2, pp. 922–929 (1996)Google Scholar
  6. 6.
    Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Sensor fault detection and identification in a mobile robot. In: IEEE Conf. on Intelligent Robots and Systems, Victoria, Canada, pp. 1383–1388 (1998)Google Scholar
  7. 7.
    Melchior, N.A., Smart, W.D.: Autonomic systems for mobile robots. In: Proceedings of the International Conference on Autonomic Computing (ICAC 2004), pp. 280–281 (2004)Google Scholar
  8. 8.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Utz, H., Sablatnög, S., Enderle, S., Kraetzschmar, G.K.: Miro – middleware for mobile robot applications. IEEE Transactions on Robotics and Automation, Special Issue on Object-Oriented Distributed Control Architectures 18(4), 493–497 (2002)Google Scholar
  10. 10.
    Steinbauer, G., Fraser, G., Mühlenfeld, A., Wotawa, F.: A modular architecture for a multi-purpose mobile robot. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1007–1015. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Henning, M., Vinoski, S.: Advanced CORBA©Programming with C++, 1st edn. Addison Wesley Professional, Reading (1999)Google Scholar
  12. 12.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerald Steinbauer
    • 1
  • Martin Mörth
    • 1
  • Franz Wotawa
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations