Calculating the Perfect Match: An Efficient and Accurate Approach for Robot Self-localization

  • Martin Lauer
  • Sascha Lange
  • Martin Riedmiller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


The paper develops a new approach for robot self-localization in the Robocup Midsize league. The approach is based on modeling the quality of an estimate using an error term and numerically minimizing it. Furthermore, we derive the reliability of the estimate analyzing the error function and apply the derived uncertainty value to a sensor integration process. The approach is characterized by high precision, robustness and computational efficiency.


Error Function Position Estimate Global Coordinate System Robot Position World Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, I.J.: Blanche – an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)CrossRefGoogle Scholar
  2. 2.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA 1999) (1999)Google Scholar
  3. 3.
    Doucet, A.: On sequential simulation-based methods for Bayesian filtering. Technical Report CUED/F-INFENG/TR.310, University of Cambridge (1998)Google Scholar
  4. 4.
    Fujii, H., Ohde, Y., Kato, M., Otsuka, F., Sema, N., Kawashima, M., Sugiyama, E., Niizuma, S., Yosida, K.: EIGEN team description. In: RoboCup 2004 (2004)Google Scholar
  5. 5.
    Gelb, A. (ed.): Applied Optimal Estimation. Cambridge (1974)Google Scholar
  6. 6.
    Iocchi, L., Nardi, D.: Self-localization in the roboCup environment. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS, vol. 1856, pp. 318–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Merke, A., Welker, S., Riedmiller, M.: Line based robot localization under natural light conditions. In: ECAI 2004 Workshop on Agents in Dynamic and Real Time Environments (2004)Google Scholar
  8. 8.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993)Google Scholar
  9. 9.
    Stahel, W.: Robust alternatives to least squares. Technical Report 78, ETHZ Seminar für Statistik (1996)Google Scholar
  10. 10.
    Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.K.: Improving vision-based self-localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 25–40. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    von Hundelshausen, F., Schreiber, M., Wiesel, F., Liers, A., Rojas, R.: MATRIX: A force field pattern matching method for mobile robots. Technical Report B-09-03, FU Berlin (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Lauer
    • 1
  • Sascha Lange
    • 1
  • Martin Riedmiller
    • 1
  1. 1.Institute of Cognitive Science and, Institute of Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations