Advertisement

How Many Parallel TCP Sessions to Open: A Pricing Perspective

  • Bruno Tuffin
  • Patrick Maillé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4033)

Abstract

TCP is one of the main transmission protocols used in the Internet. It has also been recently observed that opening parallel TCP sessions might be of interest for a user in order to increase his overall average throughput. We suggest in this paper to charge users per TCP session, and we investigate the resulting game in a homogeneous context: how many sessions should each user open? Given the discrete (and even finite) space of strategies, we propose to implement a probabilistic adaptation algorithm, analyze its theoretical properties and provide numerical illustrations.

Keywords

Nash Equilibrium Social Welfare Transmission Control Protocol Probability Vector Average Throughput 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobson, V.: Congestion avoidance and control. In: ACM SIGCOMM, pp. 314–329 (1988)Google Scholar
  2. 2.
    Baccelli, F., Hong, D.: AIMD, Fairness and Fractal Scaling of TCP Traffic. In: Proceedings of IEEE INFOCOM 2002 (2002)Google Scholar
  3. 3.
    Crowcroft, J., Oechslin, P.: Differentiated End-to-End Internet Services using a Weighted Proportional Fair Sharing TCP. ACM Computer Communications Review 47(4), 275–303 (2004)Google Scholar
  4. 4.
    Osborne, M., Rubenstein, A.: A Course on Game Theory. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  6. 6.
    Sastry, P., Phansalkar, V., Thathachar, M.: Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information. IEEE Trans. Systems, Man, and Cybernetics 24, 769–777 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Akella, A., Seshan, S., Karp, R., Shenker, S.: Selfish behavior and stability of the internet: A game-theoretic analysis of tcp. In: Proceedings of ACM SIGCOMM 2002 (2002)Google Scholar
  8. 8.
    Altman, E., Jiménez, T., Núñez Queija, R.: Analysis of two competing TCP/IP connections. Performance Evaluation 49(1), 43–56 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Zhang, H., Towsley, D., Gong, W.: TCP connection game: A study on the selfish behavior of TCP users. In: Proc. of 13th IEEE Intl. Conf. on Network Protocols (ICNP 2005), Boston, Massachusetts, USA (2005)Google Scholar
  10. 10.
    Courcoubetis, C., Weber, R.: Pricing Communication Networks—Economics, Technology and Modelling. Wiley, Chichester (2003)CrossRefGoogle Scholar
  11. 11.
    Tuffin, B.: Charging the Internet without bandwidth reservation: an overview and bibliography of mathematical approaches. Journal of Information Science and Engineering 19(5), 765–786 (2003)MathSciNetGoogle Scholar
  12. 12.
    Altman, E., Barman, D., El Azouzi, R., Ros, D., Tuffin, B.: Pricing Differentiated Services: A Game-Theoretic Approach. Computer Networks (to appear, 2005)Google Scholar
  13. 13.
    Chandramouli, R.: A stochastic technique for on-line prediction and tracking of wireless packet networks. In: Proceedings of the Thirty-Fifth Asimolar Conference on Signals, Systems and Computers, pp. 672–676 (2001)Google Scholar
  14. 14.
    Kiran, S., Chandramouli, R.: An adaptive energy efficient link layer protocol using stochastic learning control. In: Proceedings of the IEEE International Conference on Communications (ICC) (2003)Google Scholar
  15. 15.
    Xing, Y., Chandramouli, R.: Stochastic learning solution for distributed discrete power control game in wireless data networks. Technical report, Stevens Institute of Technology (2004)Google Scholar
  16. 16.
    Altman, E., Barman, D., Tuffin, B., Vojnović, M.: Parallel TCP Sockets: Simple Model, Throughput and Validation. In: IEEE INFOCOM 2006, Barcelona, Spain (2006)Google Scholar
  17. 17.
    Altman, E., El Azouzi, R., Ros, D., Tuffin, B.: Loss strategies for competing TCP/IP connections. Computer Networks (to appear, 2005)Google Scholar
  18. 18.
    Kelly, F.: Charging and rate control for elastic traffic. European transactions on Telecommunications 8, 33–37 (1997)CrossRefGoogle Scholar
  19. 19.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)Google Scholar
  20. 20.
    Rosen, J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruno Tuffin
    • 1
  • Patrick Maillé
    • 2
  1. 1.IRISA-INRIARennes CedexFrance
  2. 2.GET/ENST BretagneCesson SévignéFrance

Personalised recommendations