Algorithms for Finding a Most Similar Subforest

  • Jesper Jansson
  • Zeshan Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4009)


Given an ordered labeled forest F (“the target forest”) and an ordered labeled forest G (“the pattern forest”), the most similar subforest problem is to find a subforest F′ of F such that the distance between F′ and G is minimum over all possible F′. This problem generalizes several well-studied problems which have important applications in locating patterns in hierarchical structures such as RNA molecules’ secondary structures and XML documents. In this paper, we present efficient algorithms for the most similar subforest problem with forest edit distance for three types of subforests: simple substructures, sibling substructures, and closed subforests.


Label Tree Edit Mapping Pattern Forest Combinatorial Pattern Match Alignment Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, W.: New algorithm for ordered tree-to-tree correction problem. Journal of Algorithms 40(2), 135–158 (2001)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Cobéna, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In: Proceedings of the 18th IEEE International Conference on Data Engineering (ICDE 2002), pp. 41–52 (2002)Google Scholar
  3. 3.
    Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Oxford (1994)MATHGoogle Scholar
  4. 4.
    Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proceedings of the IEEE Computational Systems Bioinformatics Conference (CSB 2003), pp. 159–168 (2003)Google Scholar
  5. 5.
    Jansson, J., Lingas, A.: A fast algorithm for optimal alignment between similar ordered trees. Fundamenta Informaticae 56(1–2), 105–120 (2003)MathSciNetMATHGoogle Scholar
  6. 6.
    Jansson, J., Ngo, T.H., Sung, W.-K.: Local gapped subforest alignment and its application in finding RNA structural motifs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 569–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theoretical Computer Science 143, 137–148 (1995)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal on Computing 24(2), 340–356 (1995)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990)Google Scholar
  12. 12.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)CrossRefGoogle Scholar
  13. 13.
    Tai, K.-C.: The tree-to-tree correction problem. Journal of the ACM 26(3), 422–433 (1979)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Touzet, H.: A linear time edit distance algorithm for similar ordered trees. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 334–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Valiente, G.: Constrained tree inclusion. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 361–371. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jesper Jansson
    • 1
  • Zeshan Peng
    • 2
  1. 1.Department of Computer Science and Communication EngineeringKyushu UniversityHigashi-ku, FukuokaJapan
  2. 2.Department of Computer ScienceThe University of Hong KongHong Kong

Personalised recommendations