Longest Common Subsequences in Permutations and Maximum Cliques in Circle Graphs

  • Alexander Tiskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4009)


For two strings a, b, the longest common subsequence (LCS) problem consists in comparing a and b by computing the length of their LCS . In a previous paper, we defined a generalisation, called “the all semi-local LCS problem”, for which we proposed an efficient output representation and an efficient algorithm. In this paper, we consider a restriction of this problem to strings that are permutations of a given set. The resulting problem is equivalent to the all local longest increasing subsequences (LIS) problem. We propose an algorithm for this problem, running in time O(n 1.5) on an input of size n. As an interesting application of our method, we propose a new algorithm for finding a maximum clique in a circle graph on n nodes, running in the same asymptotic time O(n 1.5). Compared to a number of previous algorithms for this problem, our approach presents a substantial improvement in worst-case running time.


Maximum Clique Circle Graph Longe Common Subsequence Interval Model Maximum Clique Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, M.H., Golynski, A., Hamel, A.M., López-Ortiz, A., Rao, S.S., Safari, M.A.: Longest increasing subsequences in sliding windows. Theoretical Computer Science 321, 405–414 (2004)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Alves, C.E.R., Cáceres, E.N., Song, S.W.: An all-substrings common subsequence algorithm. Electronic Notes in Discrete Mathematics 19, 133–139 (2005)CrossRefGoogle Scholar
  3. 3.
    Apostolico, A., Atallah, M.J., Hambrusch, S.E.: New clique and independent set algorithms for circle graphs. Discrete Applied Mathematics 36, 1–24 (1992)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the ACM 23(4), 214–229 (1980)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and patience sorting. Information Processing Letters 76, 7–11 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, E., Yuan, H., Yang, L.: Longest increasing subsequences in windows based on canonical antichain partition. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1153–1162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: Some beautiful arguments using mathematical induction. Acta Informatica 13, 1–8 (1980)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Even, S., Itai, A.: Queues, stacks and graphs. In: Theory of Machines and Computations, pp. 71–86. Academic Press, London (1971)Google Scholar
  9. 9.
    Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Hsu, W.-L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM Journal on Computing 14(1), 224–231 (1985)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    JaJa, J., Mortensen, C., Shi, Q.: Space-efficient and fast algorithms for multidimensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Efficient algorithms for finding maximum cliques of an overlap graph. Networks 20, 157–171 (1990)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Rotem, D., Urrutia, J.: Finding maximum cliques in circle graphs. Networks 11, 269–278 (1981)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Tiskin, A.: All semi-local longest common subsequences in subquadratic time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 352–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Tiskin
    • 1
  1. 1.Department of Computer ScienceThe University of WarwickCoventryUnited Kingdom

Personalised recommendations