Skip to main content

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem

  • Conference paper
Combinatorial Pattern Matching (CPM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4009))

Included in the following conference series:

Abstract

A new problem in phylogenetic inference is presented, based on recent biological findings indicating a strong association between reversals (aka inversions) and repeats. These biological findings are formalized here in a new mathematical model, called repeat-annotated phylogenetic trees (RAPT). We show that, under RAPT, the evolutionary process — including both the tree-topology as well as internal node genome orders — is uniquely determined, a property that is of major significance both in theory and in practice. Furthermore, the repeats are employed to provide linear-time algorithms for reconstructing both the genomic orders and the phylogeny, which are NP-hard problems under the classical model of sorting by reversals (SBR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swidan, F., Rocha, E.P.C., Shmoish, M., Pinter, R.: An integrative method for accurate comparative genome mapping (submitted, 2005)

    Google Scholar 

  2. Qian, W., Jia, Y., Ren, S.X., He, Y.Q., Feng, J.X., Lu, L.F., Sun, Q., Ying, G., et al.: Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15(6), 757–767 (2005)

    Article  Google Scholar 

  3. Achaz, G., Boyer, F., Rocha, E.P.C., Viari, A., Coissac, E.: Extracting approximate repeats from large DNA sequences (2004)

    Google Scholar 

  4. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D., Rehrauer, W.M.: Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994)

    Google Scholar 

  5. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for the inversion distance between two permutations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. In: Proc. 8th Ann. Symp. on Discrete Algorithms, pp. 344–351 (1997)

    Google Scholar 

  7. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Tannier, E., Sagot, M.F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Bender, M., Ge, D., He, S., Hu, H., Pinter, R., Skiena, S., Swidan, F.: Improved bounds on sorting with length-weighted reversals. In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 912–921 (2004)

    Google Scholar 

  11. Swidan, F., Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y.: Sorting by length-weighted reversals: Dealing with signs and circularity. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 32–46. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. Discrete Applied Mathematics 146(2), 134–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc 3th Ann. Int. Conf. on Computational Molecular Biology, pp. 84–93. ACM Press, New York (1999)

    Google Scholar 

  14. Moret, B., Wang, L., Warnow, T., Wyman, S.: New approaches for reconstructing phylogenies from gene order data. In: Proc. 9th Int. Conf. Intell. Syst. Mol. Biol., pp. 165–173 (2001)

    Google Scholar 

  15. Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  16. Gonnet, G.H.: Handbook of Algorithms and Data Structures. International Computer Science Services (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swidan, F., Ziv-Ukelson, M., Pinter, R.Y. (2006). On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem. In: Lewenstein, M., Valiente, G. (eds) Combinatorial Pattern Matching. CPM 2006. Lecture Notes in Computer Science, vol 4009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780441_14

Download citation

  • DOI: https://doi.org/10.1007/11780441_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35455-0

  • Online ISBN: 978-3-540-35461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics