Asynchronous Pattern Matching

  • Amihood Amir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4009)


This paper introduces a new pattern matching model that has been gaining importance recently, that of Asynchronous Pattern Matching. Traditional pattern matching has assumed the possibility of errors in the data content. We present motivation from text editing, computational biology, and computer architecture, that points to a new paradigm – where the errors occur in the address. It turns out that there are differences in techniques, complexities, and tools between the two different models, making it important to recognize their differences.

We motivate and define the new model and present some problems that are worth pursuing.


Pattern Match String Match Text Location Address Error Distance Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamson, K.: Generalized string matching. SIAM J. Comp. 16(6), 1039–1051 (1987)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Amir, A., Aumann, A., Levy, A.: Pattern matching with address bit errors (submitted for publication, 2006)Google Scholar
  3. 3.
    Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: rearrangement distances. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1221–1229 (2006)Google Scholar
  4. 4.
    Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching. Information and Computation 181(1), 57–74 (2003)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Amir, A., Hartman, T., Kapah, O., Levy, A.: Interchange and weighted-interchange rearrangement distances in strings (submitted for publication, 2006)Google Scholar
  6. 6.
    Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Information Processing Letters 83(1), 33–39 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k mismatches. J. Algorithms (2004)Google Scholar
  8. 8.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. on Discrete Mathematics 11, 221–240 (1998)MathSciNetGoogle Scholar
  9. 9.
    Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Skiena, S., Swidan, F.: Improved bounds on sorting with length-weighted reversals. In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 912–921 (2004)Google Scholar
  10. 10.
    Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Swidan, F.: Sorting by length-weighted reversals: Dealing with signs and circularity. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 32–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Carpara, A.: Sorting by reversals is difficult. In: Proc. 1st Annual Intl. Conf. on Research in Computational Biology (RECOMB), pp. 75–83. ACM Press, New York (1997)Google Scholar
  13. 13.
    Christie, D.A.: Sorting by block-interchanges. Information Processing Letters 60, 165–169 (1996)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In: Proc. 36th Annual ACM Symposium on the Theory of Computing (STOC), pp. 91–100. ACM Press, New York (2004)Google Scholar
  15. 15.
    Cole, R., Hariharan, R.: Approximate string matching: A faster simpler algorithm. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 463–472 (1998)Google Scholar
  16. 16.
    Ferragina, P., Grossi, R.: Fast incremental text editing. In: Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 531–540 (1995)Google Scholar
  17. 17.
    Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M. (ed.) SIAM-AMS Proceedings on Complexity of Computation, vol. 7, pp. 113–125 (1974)Google Scholar
  18. 18.
    Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT News 17(4), 52–54 (1986)CrossRefGoogle Scholar
  19. 19.
    Gu, M., Farach, M., Beigel, R.: An efficient algorithm for dynamic text indexing. In: Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 697–704 (1994)Google Scholar
  20. 20.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd edn. Morgan Kaufmann, San Francisco (2002)MATHGoogle Scholar
  21. 21.
    Karloff, H.: Fast algorithms for approximately counting mismatches. Information Processing Letters 48(2), 53–60 (1993)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Karp, R., Miller, R., Rosenberg, A.: Rapid identification of repeated patterns in strings, arrays and trees. Symposium on the Theory of Computing 4, 125–136 (1972)Google Scholar
  23. 23.
    Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theoretical Computer Science 43, 239–249 (1986)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Levenshtein, V.I.: Binary codes capable of correcting, deletions, insertions and reversals. Soviet Phys. Dokl. 10, 707–710 (1966)MathSciNetGoogle Scholar
  25. 25.
    Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction problem. J. of the ACM, 177–183 (1975)Google Scholar
  26. 26.
    Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of patterns using a labeling paradigm. In: Proc. 37th FOCS, pp. 320–328 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amihood Amir
    • 1
    • 2
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.College of Computing, Georgia TechAtlantaUSA

Personalised recommendations