Skip to main content

Prefix-Like Complexities and Computability in the Limit

  • Conference paper
  • 878 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3988)

Abstract

Computability in the limit represents the non-plus-ultra of constructive describability. It is well known that the limit computable functions on naturals are exactly those computable with the oracle for the halting problem. However, prefix (Kolmogorov) complexities defined with respect to these two models may differ. We introduce and compare several natural variations of prefix complexity definitions based on generalized Turing machines embodying the idea of limit computability, as well as complexities based on oracle machines, for both finite and infinite sequences.

Keywords

  • Kolmogorov complexity
  • limit computability
  • generalized Turing machine
  • non-halting computation

This work was sponsored by SNF grant 200020-107590/1.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11780342_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-35468-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asarin, E., Collins, P.: Noisy Turing Machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1031–1042. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  2. Becher, V., Figueira, S.: Kolmogorov Complexity for Possibly Infinite Computations. J. Logic, Language and Information 14(2), 133–148 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Becher, V., Figueira, S., Nies, A., Picchi, S.: Program Size Complexity for Possibly Infinite Computations. Notre Dame J. Formal Logic 46(1), 51–64 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Burgin, M.S.: Inductive Turing Machines. Soviet Math. Doklady 27(3), 730–734 (1983)

    MATH  Google Scholar 

  5. Calude, C.S., Pavlov, B.: Coins, Quantum Measurements, and Turing’s Barrier. Quantum Information Processing 1(1–2), 107–127 (2002)

    CrossRef  MathSciNet  Google Scholar 

  6. Case, J., Jain, S., Sharma, A.: On Learning Limiting Programs. In: Proc. of COLT 1992, pp. 193–202. ACM Press, New York (1992)

    Google Scholar 

  7. Chaitin, G.J.: A Theory of Program Size Formally Identical to Information Theory. Journal of the ACM 22, 329–340 (1975)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Chernov, A., Schmidhuber, J.: Prefix-like Complexities of Finite and Infinite Sequences on Generalized Turing Machines. Technical Report IDSIA-11-05, Manno (Lugano), Switzerland (2005)

    Google Scholar 

  9. Durand, B., Shen, A., Vereshchagin, N.: Descriptive Complexity of Computable Sequences. Theoretical Computer Science 271(1–2), 47–58 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Etesi, G., Nemeti, I.: Non-Turing Computations via Malament-Hogarth Space-Times. International Journal of Theoretical Physics 41, 341 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Freivald, R.V.: Functions Computable in the Limit by Probabilistic Machines. In: Proc. of the 3rd Symposium on Mathematical Foundations of Computer Science, pp. 77–87. Springer, Heidelberg (1975)

    CrossRef  Google Scholar 

  12. Gács, P.: On the Relation between Descriptional Complexity and Algorithmic Probability. Theoretical Computer Science 22(1–2), 71–93 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Gold, E.M.: Limiting Recursion. J. Symbolic Logic 30(1), 28–46 (1965)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Hayashi, S., Nakata, M.: Towards Limit Computable Mathematics. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 125–144. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  15. Kolmogorov, A.N.: Three Approaches to the Quantitative Definition of Information. Problems of Information Transmission 1(1), 1–11 (1965)

    MathSciNet  MATH  Google Scholar 

  16. Levin, L.A.: Laws of Information (Nongrowth) and Aspects of the Foundation of Probability Theory. Problems of Information Transmission 10(3), 206–210 (1974)

    Google Scholar 

  17. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Heidelberg (1997)

    CrossRef  MATH  Google Scholar 

  18. Poland, J.: A Coding Theorem for Enumerating Output Machines. Information Processing Letters 91(4), 157–161 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Schmidhuber, J.: Algorithmic Theories of Everything. Technical Report IDSIA-20-00, quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland (2000)

    Google Scholar 

  20. Schmidhuber, J.: Hierarchies of Generalized Kolmogorov Complexities and Nonenumerable Universal Measures Computable in the Limit. International J. Foundations of Computer Science 13(4), 587–612 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Shoenfield, J.R.: On Degrees of Unsolvability. Annals of Mathematics 69, 644–653 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Simpson, S.G.: Degrees of Unsolvability: A Survey of Results. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 631–652. North-Holland, Amsterdam (1977)

    CrossRef  Google Scholar 

  23. Uspensky, V.A., Vereshchagin, N.K., Shen, A.: Lecture Notes on Kolmogorov Complexity (unpublished), http://lpcs.math.msu.su/~ver/kolm-book

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chernov, A., Schmidhuber, J. (2006). Prefix-Like Complexities and Computability in the Limit. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_9

Download citation

  • DOI: https://doi.org/10.1007/11780342_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)