Advertisement

Non-deterministic Halting Times for Hamkins-Kidder Turing Machines

  • P. D. Welch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

Abstract

In this talk we consider some issues related to the Infinite Time Turing Machine (ITTM) model of Hamkins & Lewis [3]. In particular our main results (Propositions 1 & 2) relate to Bounding times of the lengths of certain computations, and their application to certain questions raised in [2] on “non-determinism” both in terms of non-deterministically halting ordinals (Theorem 2) and pointclasses defined by using such non-deterministic machines (Proposition 6).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, K.J.: Admissible Sets and Structures. In: Perspectives in Mathematical Logic. Springer, Heidelberg (1975)Google Scholar
  2. 2.
    Deolalikar, V., Hamkins, J.D., Schindler, R.-D.: P ≠ NP ∩ co − NP for the infinite time Turing machines. Journal of Logic and Computation 15, 577–592 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65(2), 567–604 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Moschovakis, Y.: Descriptive Set theory. Studies in Logic series. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  5. 5.
    Schindler, R.-D.: P ≠ NP for infinite time Turing machines. Monatsheft für Mathematik (to appear)Google Scholar
  6. 6.
    Spector, C.: Recursive wellorderings. Journal of Symbolic Logic 20, 151–163 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Welch, P.D.: The length of infinite time Turing machine computations. Bulletin of the London Mathematical Society 32, 129–136 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Welch, P.D.: Eventually infinite time Turing degrees: infinite time decidable reals. Journal for Symbolic Logic 65(3), 1193–1203 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. D. Welch
    • 1
  1. 1.School of MathematicsUniversity of BristolEngland

Personalised recommendations