Phase Transition Thresholds for Some Natural Subclasses of the Computable Functions

  • Andreas Weiermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


In this paper we first survey recent advances on phase transition phenomena which are related to natural subclasses of the recursive functions. Special emphasis is put on descent recursive functions, witness bounding functions for well-partial orders and Ramsey functions. In the last section we prove in addition some results which show how the asymptotic of the standard Ramsey function is affected by phase transitions for associated parameterized Ramsey functions.


Phase Transition Recursive Function Termination Proof Ramsey Theory Primitive Recursive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai, T.: On the slowly well orderedness of ε 0. Math. Log. Q. 48, 125–130 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Buchholz, W., Cichon, A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Log. Q. 40, 273–286 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Carlucci, L., Lee, G., Weiermann, A.: Classifying the phase transition threshold for regressive Ramsey functions (preprint, 2006) (submitted to TAMS)Google Scholar
  4. 4.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American Journal of Mathematics 35, 413–422 (1913)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Erdös, P., Mills, G.: Some bounds for the Ramsey-Paris-Harrington numbers. J. Combin. Theory Ser. A 30(1), 53–70 (1981)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Erdös, P., Hajnal, A., Máté, A., Rado, R.: Combinatorial set theory: Partition relations for cardinals. Studies in Logic and the Foundations of Mathematics, p. 106. North-Holland, Amsterdam (1984)MATHGoogle Scholar
  7. 7.
    Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. 2(3), 417–439 (1952)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Graham, R.L., Rotschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, Chichester (1980)Google Scholar
  9. 9.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 3(2), 326–336 (1952)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kanamori, A., McAloon, K.: On Gödel incompleteness and finite combinatorics. Ann. Pure Appl. Logic 33(1), 23–41 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kirby, L., Paris, J.B.: Initial segments of models of Peano’s axioms. In: Set theory and hierarchy theory, V. Proc. Third Conf., Bierutowice, 1976. Lecture Notes in Math., vol. 619, pp. 211–226. Springer, Berlin (1977)CrossRefGoogle Scholar
  12. 12.
    Kojman, M., Lee, G., Omri, E., Weiermann, A.: Sharp thresholds for the Phase Transition between Primitive Recursive and Ackermaniann Ramsey Numbers (preprint, 2005)Google Scholar
  13. 13.
    Kojman, M., Shelah, S.: Regressive Ramsey numbers are Ackermannian. J. Comb. Theory Ser. A 86(1), 177–181 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kripke, S.: The problem of entailment. Journal of Symbolic Logic 24, 324 (1959) (abstract)CrossRefGoogle Scholar
  15. 15.
    Lee, G.: Phase Transitions in Axiomatic Thought, PhD thesis (written under the supervision of A. Weiermann), Münster, 121 pages (2005)Google Scholar
  16. 16.
    Moreno Socias, G.: An Ackermannian polynomial ideal. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 269–280. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Ramsey, F.P.: On a problem of Formal Logic. Proc. London Math. Soc. ser. 2(30), 338–384 (1930)Google Scholar
  18. 18.
    Schwichtenberg, H.: Eine Klassifikation der \(\varepsilon \sb{0}\)-rekursiven Funktionen. Z. Math. Logik Grundlagen Math. 17, 61–74 (1971)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Simpson, S.G.: Ordinal numbers and the Hilbert basis theorem. J. Symbolic Logic 53(3), 961–974 (1988)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Smith, R.L.: The consistency strength of some finite forms of the Higman and Kruskal theorems. In: Harrington, L.A., et al. (eds.) Harvey Friedman’s Research on the Foundations of Mathematics, pp. 119–136 (1985)Google Scholar
  21. 21.
    Wainer, S.S.: A classification of the ordinal recursive functions. Archiv für Mathematische Logik und Grundlagenforschung 13, 136–153 (1970)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Weiermann, A.: How to characterize provably total functions by local predicativity. J. Symbolic Logic 61(1), 52–69 (1996)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Weiermann, A.: An application of graphical enumeration to PA. J. Symbolic Logic 68(1), 5–16 (2003)MathSciNetMATHGoogle Scholar
  24. 24.
    Weiermann, A.: An application of results by Hardy, Ramanujan and Karamata to Ackermannian functions. Discrete Mathematics and Computer Science 6, 133–142 (2003)MathSciNetMATHGoogle Scholar
  25. 25.
    Weiermann, A.: A very slow growing hierarchy for \(\Gamma\sb 0\). Logic Colloquium 1999, pp. 182–199, Lect. Notes Log. 17, Assoc. Symbol. Logic, Urbana, IL (2004)Google Scholar
  26. 26.
    Weiermann, A.: A classification of rapidly growing Ramsey functions. Proc. Amer. Math. Soc. 132(2), 553–561 (2004)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Weiermann, A.: Analytic Combinatorics, proof-theoretic ordinals and phase transitions for independence results. Ann. Pure Appl. Logic. 136, 189–218 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Weiermann, A.: An extremely sharp phase transition threshold for the slow growing hierarchy. Mathematical Structures in Computer Science (to appear)Google Scholar
  29. 29.
    Weiermann, A.: Classifying the phase transition for Paris Harrington numbers (preprint, 2005)Google Scholar
  30. 30.
    Weiermann, A.: Phase transitions for some Friedman style independence results Preprint. In: MLQ (to appear, 2006)Google Scholar
  31. 31.
    Wilf, H.S.: Generatingfunctionology, 2nd edn. p. x, 228. Academic Press, Boston (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Weiermann
    • 1
  1. 1.Departement WiskundeFakulteit BètawetenschappenUtrechtThe Netherlands

Personalised recommendations