Skip to main content

Phase Transition Thresholds for Some Natural Subclasses of the Computable Functions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3988))

Abstract

In this paper we first survey recent advances on phase transition phenomena which are related to natural subclasses of the recursive functions. Special emphasis is put on descent recursive functions, witness bounding functions for well-partial orders and Ramsey functions. In the last section we prove in addition some results which show how the asymptotic of the standard Ramsey function is affected by phase transitions for associated parameterized Ramsey functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T.: On the slowly well orderedness of ε 0. Math. Log. Q. 48, 125–130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchholz, W., Cichon, A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Log. Q. 40, 273–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlucci, L., Lee, G., Weiermann, A.: Classifying the phase transition threshold for regressive Ramsey functions (preprint, 2006) (submitted to TAMS)

    Google Scholar 

  4. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American Journal of Mathematics 35, 413–422 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdös, P., Mills, G.: Some bounds for the Ramsey-Paris-Harrington numbers. J. Combin. Theory Ser. A 30(1), 53–70 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdös, P., Hajnal, A., Máté, A., Rado, R.: Combinatorial set theory: Partition relations for cardinals. Studies in Logic and the Foundations of Mathematics, p. 106. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  7. Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. 2(3), 417–439 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graham, R.L., Rotschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, Chichester (1980)

    Google Scholar 

  9. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 3(2), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanamori, A., McAloon, K.: On Gödel incompleteness and finite combinatorics. Ann. Pure Appl. Logic 33(1), 23–41 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirby, L., Paris, J.B.: Initial segments of models of Peano’s axioms. In: Set theory and hierarchy theory, V. Proc. Third Conf., Bierutowice, 1976. Lecture Notes in Math., vol. 619, pp. 211–226. Springer, Berlin (1977)

    Chapter  Google Scholar 

  12. Kojman, M., Lee, G., Omri, E., Weiermann, A.: Sharp thresholds for the Phase Transition between Primitive Recursive and Ackermaniann Ramsey Numbers (preprint, 2005)

    Google Scholar 

  13. Kojman, M., Shelah, S.: Regressive Ramsey numbers are Ackermannian. J. Comb. Theory Ser. A 86(1), 177–181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kripke, S.: The problem of entailment. Journal of Symbolic Logic 24, 324 (1959) (abstract)

    Article  Google Scholar 

  15. Lee, G.: Phase Transitions in Axiomatic Thought, PhD thesis (written under the supervision of A. Weiermann), Münster, 121 pages (2005)

    Google Scholar 

  16. Moreno Socias, G.: An Ackermannian polynomial ideal. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 269–280. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  17. Ramsey, F.P.: On a problem of Formal Logic. Proc. London Math. Soc. ser. 2(30), 338–384 (1930)

    Google Scholar 

  18. Schwichtenberg, H.: Eine Klassifikation der \(\varepsilon \sb{0}\)-rekursiven Funktionen. Z. Math. Logik Grundlagen Math. 17, 61–74 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simpson, S.G.: Ordinal numbers and the Hilbert basis theorem. J. Symbolic Logic 53(3), 961–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smith, R.L.: The consistency strength of some finite forms of the Higman and Kruskal theorems. In: Harrington, L.A., et al. (eds.) Harvey Friedman’s Research on the Foundations of Mathematics, pp. 119–136 (1985)

    Google Scholar 

  21. Wainer, S.S.: A classification of the ordinal recursive functions. Archiv für Mathematische Logik und Grundlagenforschung 13, 136–153 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weiermann, A.: How to characterize provably total functions by local predicativity. J. Symbolic Logic 61(1), 52–69 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weiermann, A.: An application of graphical enumeration to PA. J. Symbolic Logic 68(1), 5–16 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Weiermann, A.: An application of results by Hardy, Ramanujan and Karamata to Ackermannian functions. Discrete Mathematics and Computer Science 6, 133–142 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Weiermann, A.: A very slow growing hierarchy for \(\Gamma\sb 0\). Logic Colloquium 1999, pp. 182–199, Lect. Notes Log. 17, Assoc. Symbol. Logic, Urbana, IL (2004)

    Google Scholar 

  26. Weiermann, A.: A classification of rapidly growing Ramsey functions. Proc. Amer. Math. Soc. 132(2), 553–561 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiermann, A.: Analytic Combinatorics, proof-theoretic ordinals and phase transitions for independence results. Ann. Pure Appl. Logic. 136, 189–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weiermann, A.: An extremely sharp phase transition threshold for the slow growing hierarchy. Mathematical Structures in Computer Science (to appear)

    Google Scholar 

  29. Weiermann, A.: Classifying the phase transition for Paris Harrington numbers (preprint, 2005)

    Google Scholar 

  30. Weiermann, A.: Phase transitions for some Friedman style independence results Preprint. In: MLQ (to appear, 2006)

    Google Scholar 

  31. Wilf, H.S.: Generatingfunctionology, 2nd edn. p. x, 228. Academic Press, Boston (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiermann, A. (2006). Phase Transition Thresholds for Some Natural Subclasses of the Computable Functions. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_57

Download citation

  • DOI: https://doi.org/10.1007/11780342_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics