Advertisement

Elementary Algebraic Specifications of the Rational Function Field

  • J. A. Bergstra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)

Abstract

The elementary algebraic specifications form a small subset of the range of techniques available for algebraic specifications and are based on equational specifications with hidden functions and sorts and initial algebra semantics. General methods exist to show that all semicomputable and computable algebras can be characterised up to isomorphism by such specifications. Here we consider these specification methods for specific computable rational number arithmetics. In particular, we give an elementary equational specification of the 0-totalised rational function field ℚ0(X) with its degree operator as an auxiliary function.

Keywords

Data Type Rational Number Abstract Data Type Conditional Equation Degree Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamek, J., Hebert, M., Rosicky, J.: On abstract data types presented by multiequations. Theoretical Computer Science 275, 427–462 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bergstra, J.A., Tucker, J.V.: The completeness of the algebraic specification methods for data types. Information and Control 54, 186–200 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifications: two characterisation theorems. SIAM Journal on Computing 12, 366–387 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semicomputable data types. Theoretical Computer Science 50, 137–181 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bergstra, J.A., Tucker, J.V.: Equational specifications, complete term rewriting systems, and computable and semicomputable algebras. Journal of ACM 42, 1194–1230 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bergstra, J.A., Tucker, J.V.: The data type variety of stack algebras. Annals of Pure and Applied Logic 73, 11–36 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type (submitted)Google Scholar
  8. 8.
    Bergstra, J.A., Tucker, J.V.: Elementary algebraic specifications of the rational complex numbers (submitted)Google Scholar
  9. 9.
    Calkin, N., Wilf, H.S.: Recounting the rationals. American Mathematical Monthly 107, 360–363 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Contejean, E., Marche, C., Rabehasaina, L.: Rewrite systems for natural, integral, and rational arithmetic. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 98–112. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Goguen, J.A.: Memories of ADJ. Bulletin of the European Association for Theoretical Computer Science 36, 96–102 (1989)MATHGoogle Scholar
  12. 12.
    Goguen, J.A.: Tossing algebraic flowers down the great divide. In: Calude, C.S. (ed.) People and ideas in theoretical computer science, pp. 93–129. Springer, Singapore (1999)Google Scholar
  13. 13.
    Meseguer, J., Goguen, J.A.: Initiality, induction, and computability. In: Nivat, M. (ed.) Algebraic methods in semantics, pp. 459–541. Cambridge University Press, Cambridge (1986)Google Scholar
  14. 14.
    Meseguer, J., Goguen, J.A.: Remarks on remarks on many-sorted algebras with possibly emtpy carrier sets. Bulletin of the EATCS 30, 66–73 (1986)MATHGoogle Scholar
  15. 15.
    Goguen, J.A., Diaconescu, R.: An Oxford Survey of Order Sorted Algebra. Mathematical Structures in Computer Science 4, 363–392 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics and continuous algebras. Journal of ACM 24, 68–95 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Yeh, R.T. (ed.) Current trends in programming methodology. IV. Data structuring, pp. 80–149. Prentice-Hall, Engelwood Cliffs (1978)Google Scholar
  18. 18.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)CrossRefMATHGoogle Scholar
  19. 19.
    Kamin, S.: Some definitions for algebraic data type specifications. SIGLAN Notices 14(3), 28 (1979)CrossRefGoogle Scholar
  20. 20.
    Khoussainov, B.: Randomness, computability, and algebraic specifications. Annals of Pure and Applied Logic, 1–15 (1998)Google Scholar
  21. 21.
    Khoussainov, B.: On algebraic specifications of abstract data types. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 299–313. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Marongiu, G., Tulipani, S.: On a conjecture of Bergstra and Tucker. Theoretical Computer Science 67 (1989)Google Scholar
  23. 23.
    Meinke, K., Tucker, J.V.: Universal algebra. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, Mathematical Structures, vol. I, pp. 189–411. Oxford University Press, Oxford (1992)Google Scholar
  24. 24.
    Meseguer, J., Goguen, J.A.: Initiality, induction and computability. In: Nivat, M., Reynolds, J. (eds.) Algebraic methods in semantics, pp. 459–541. Cambridge University Press, Cambridge (1985)Google Scholar
  25. 25.
    Moss, L.: Simple equational specifications of rational arithmetic. Discrete Mathematics and Theoretical Computer Science 4, 291–300 (2001)MathSciNetMATHGoogle Scholar
  26. 26.
    Moss, L., Meseguer, J., Goguen, J.A.: Final algebras, cosemicomputable algebras, and degrees of unsolvability. Theoretical Computer Science 100, 267–302 (1992)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, Semantic Modelling, vol. IV, pp. 357–526. Oxford University Press, Oxford (1995)Google Scholar
  28. 28.
    Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  29. 29.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  30. 30.
    Wagner, E.: Algebraic specifications: some old history and new thoughts. Nordic Journal of Computing 9, 373–404 (2002)MathSciNetMATHGoogle Scholar
  31. 31.
    Wechler, W.: Universal algebra for computer scientists. EATCS Monographs in Computer Science. Springer, Heidelberg (1992)CrossRefMATHGoogle Scholar
  32. 32.
    Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Formal models and semantics, vol. B, pp. 675–788. North-Holland, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. A. Bergstra
    • 1
    • 2
  1. 1.Programming Research GroupUniversity of AmsterdamAmsterdamNetherlands
  2. 2.Applied Logic GroupUtrecht UniversityUtrechtNetherlands

Personalised recommendations