Fast Quantifier Elimination Means P = NP

  • Mihai Prunescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


The first part is a survey of Poizat’s theory about fast elimination of quantifiers and the P = NP question according to the unit-cost model of computation, as developed along the book [7]. The second part is a survey of the structure with fast elimination constructed by the author in [9].


Turing Machine Free Variable Black Point Generic Predicate Input Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Blum, L., Shub, M., Smale, S.: On a theory of computation of complexity over the real numbers. American Mathematical Society Bulletin 21 (1989)Google Scholar
  3. 3.
    Gaßner, C.: A structure of finite signature with identity relation and with P = NP. Preprints of the University Greifswald number 1, 2, 13, 14 /2004; 1, 9, 17 / 2005; 1 / 2006 (different versions and expositions)Google Scholar
  4. 4.
    Hemmerling, A.: P = NP for some structures over the binary words. Journal of Complexity 21(4), 557–578 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kripke, S.: Outline of a theory of truth. The Journal of Philosophy 72(19), 690–716 (1975)CrossRefMATHGoogle Scholar
  6. 6.
    Poizat, B.: Les petits cailloux. ALEAS, Lyon (1995)Google Scholar
  7. 7.
    Poizat, B.: Une tentative malheureuse de construire une structure éliminant rapidement les quanteurs. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 61–70. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Prunescu, M.: Non-effective quantifier elimination. Mathematical Logic Quarterly 47(4), 557–561 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Prunescu, M.: Structure with fast elimination of quantifiers. The Journal of Symbolic Logic 71(1), 321–328 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mihai Prunescu
    • 1
    • 2
  1. 1.”Dr. Achim Hornecker — Software-Entwicklung und I.T.-Dienstleistungen”Freiburg im BreisgauGermany
  2. 2.Institute of Mathematics“Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations