Space Bounds for Infinitary Computation

  • Benedikt Löwe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


Infinite Time Turing Machines (or Hamkins-Kidder machines) have been introduced in [HaLe00] and their computability theory has been investigated in comparison to the usual computability theory in a sequence of papers by Hamkins, Lewis, Welch and Seabold: [HaLe00], [We00a], [We00b], [HaSe01], [Hale02], [We04], [We05] (cf. also the survey papers [Ha02], [Ha04] and [Ha05]). Infinite Time Turing Machines have the same hardware as ordinary Turing Machines, and almost the same software. However, an Infinite Time Turing Machine can continue its computation if it still hasn’t reached the Halt state after infinitely many steps (for details, see §, 1).


Turing Machine Space Constraint Order Type Space Usage Space Bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper, S.B., Löwe, B., Torenvliet, L. (eds.): CiE 2005. LNCS, vol. 3526, pp. 1–7. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Deolalikar, V., Hamkins, J.D., Schindler, R.-D.: P ≠ NP ∩ coNP for Infinite Time Turing Machines. Journal of Logic and Computation 15, 577–592 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hamkins, J.D.: Infinite time Turing machines. Minds and Machines 12, 521–539 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Hamkins, J.D.: Supertask Computation. In: LöPiRä 2004, pp. 141–158 (2004)Google Scholar
  5. 5.
    Hamkins, J.D.: Infinitary computability with infinite time turing machines. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 180–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65, 567–604 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hamkins, J.D., Lewis, A.: Post’s problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic 41, 507–523 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hamkins, J.D., Seabold, D.E.: Infinite time Turing machines with only one tape. Mathematical Logic Quarterly 47, 271–287 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hamkins, J.D., Welch, P.D.: P f ≠ NP f for almost all f. Mathematical Logic Quarterly 49, 536–540 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Koepke, P.: Turing Computations on Ordinals. Bulletin of Symbolic Logic 11, 377–397 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Koepke, P.: Computing a model of set theory. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 223–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Koepke, P., Koerwien, M.: Ordinal computations. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526. Springer, Heidelberg (2005); special issue of the journal Mathematical Structures in Computer ScienceCrossRefGoogle Scholar
  13. 13.
    Löwe, B., Piwinger, B., Räsch, T. (eds.): Classical and New Paradigms of Computation and their Complexity Hierarchies. In: Papers of the conference Foundations of the Formal Sciences III, Dordrecht (2004) [Trends in Logic 23]Google Scholar
  14. 14.
    Papadimitriou, C.H.: Computational Complexity, Reading MA (1994)Google Scholar
  15. 15.
    Schindler, R.: P ≠ NP for infinite time Turing machines. Monatshefte der Mathematik 139, 335–340 (2003)CrossRefMATHGoogle Scholar
  16. 16.
    Welch, P.D.: The length of infinite time Turing machine computations. Bulletin of the London Mathematical Society 32, 129–136 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Welch, P.D.: Eventually infinite time Turing machine degrees: Infinite time decidable reals. Journal of Symbolic Logic 65, 1193–1203 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Welch, P.D.: Determinacy and Post’s Problem for Infinite Time Turing Machines. In: LöPiRä 2004, pp. 223–237 (2004)Google Scholar
  19. 19.
    Welch, P.D.: Arithmetical Quasi-inductive definitions and the transfinite action of 1-tape Turing Machines. In: CoLöTo 2005, pp. 532–539 (2005)Google Scholar
  20. 20.
    Welch, P.D.: Non-deterministic halting times for Hamkins-Kidder Turing machines. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 571–574. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benedikt Löwe
    • 1
    • 2
    • 3
  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Mathematisches InstitutRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  3. 3.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations