Böhm Trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms

  • Thomas Ehrhard
  • Laurent Regnier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3988)


We introduce and study a version of Krivine’s machine which provides a precise information about how much of its argument is needed for performing a computation. This information is expressed as a term of a resource lambda-calculus introduced by the authors in a recent article; this calculus can be seen as a fragment of the differential lambda-calculus. We use this machine to show that Taylor expansion of lambda-terms (an operation mapping lambda-terms to generally infinite linear combinations of resource lambda-terms) commutes with Böhm tree computation.


Taylor Expansion Resource Environment Partial Function Simple Term Leibniz Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer Science 309(1–3), 1–41 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-terms. Technical report, Institut de mathématiques de Luminy (2005) Theoretical Computer Science (submitted)Google Scholar
  3. 3.
    Boudol, G.: The lambda calculus with multiplicities. Technical Report 2025, INRIA Sophia-Antipolis (1993)Google Scholar
  4. 4.
    Boudol, G., Curien, P.-L., Lavatelli, C.: A semantics for lambda calculi with resource. Mathematical Structures in Computer Science 9(4), 437–482 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kfoury, A.J.: A linearization of the lambda-calculus. Journal of Logic and Computation 10(3), 411–436 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ehrhard, T., Regnier, L.: Differential interaction nets. In: Proceedings of WoLLIC 2004. Electronic Notes in Theoretical Computer Science, vol. 103, pp. 35–74. Elsevier Science, Amsterdam (2004)Google Scholar
  7. 7.
    Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation (to appear, 2005)Google Scholar
  8. 8.
    De Bruijn, N.: Generalizing Automath by means of a lambda-typed lambda calculus. In: Kueker, D.W., Lopez-Escobar, E.G.K., Smith, C.H. (eds.) Mathematical Logic and Theoretical Computer Science. Lecture Notes in Pure and Applied Mathematics, pp. 71–92. Marcel Dekker (1987); Reprinted in: Selected papers on Automath, Studies in Logic, vol. 133, pp. 313–337. North-Holland (1994)Google Scholar
  9. 9.
    Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines. Theoretical Computer Science 227(1–2), 273–291 (1999)MathSciNetMATHGoogle Scholar
  10. 10.
    Vaux, L.: The differential lambda-mu calculus. Technical report, Institut de Mathématiques de Luminy (submitted for publication, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Ehrhard
    • 1
  • Laurent Regnier
    • 2
  1. 1.Preuves, Programmes et Systèmes (UMR 7126)France
  2. 2.Institut de Mathématiques de Luminy (UMR 6206)France

Personalised recommendations