Complete Categorical Deduction for Satisfaction as Injectivity

  • Grigore Roşu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


Birkhoff (quasi-)variety categorical axiomatizability results have fascinated many scientists by their elegance, simplicity and generality. The key factor leading to their generality is that equations, conditional or not, can be regarded as special morphisms or arrows in a special category, where their satisfaction becomes injectivity, a simple and abstract categorical concept. A natural and challenging next step is to investigate complete deduction within the same general and elegant framework. We present a categorical deduction system for equations as arrows and show that, under appropriate finiteness requirements, it is complete for satisfaction as injectivity. A straightforward instantiation of our results yields complete deduction for several equational logics, in which conditional equations can be derived as well at no additional cost, as opposed to the typical method using the theorems of constants and of deduction. At our knowledge, this is a new result in equational logics.


Inference Rule Factorization System Deduction System Free Algebra Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994), London Math. Society. Lecture Note Series 189MATHCrossRefGoogle Scholar
  2. 2.
    Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Csakany, B., Fried, E., Schmidt, E. (eds.) Universal Algebra. Colloquia Mathematics Societas János Bolyai, vol. 29, pp. 13–35. North-Holland, Amsterdam (1981)Google Scholar
  3. 3.
    Andréka, H., Németi, I.: Generalization of the concept of variety and quasivariety to partial algebras through category theory. In: ISSAC 1985 and EUROCAL 1985, vol. 204, Polish Scientific Publishers, Warsaw (1983)Google Scholar
  4. 4.
    Banaschewski, B., Herrlich, H.: Subcategories defined by implications. Houston Journal Mathematics 2, 149–171 (1976)MATHMathSciNetGoogle Scholar
  5. 5.
    Bergstra, J., Tucker, J.: Characterization of computable data types by means of a finite equational specification method. In: de Bakker, J., van Leeuwen, J. (eds.) Data Base Techniques for Pictorial Application. LNCS, vol. 81, pp. 76–90. Springer, Heidelberg (1980)Google Scholar
  6. 6.
    Bergstra, J., Tucker, J.V.: Equational specifications, complete term rewriting systems, and computable and semicomputable algebras. Journal of the Associationfor Computing Machinery 42(6), 1194–1230 (1995)MATHMathSciNetGoogle Scholar
  7. 7.
    Birkhoff, G.: On the structure of abstract algebras. In: Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 433–454 (1935)Google Scholar
  8. 8.
    Birkhoff, G., Lipson, J.: Heterogenous algebras. Journal of Combinatorial Theory 8, 115–133 (1970)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Borovanský, P., Cîrstea, H., Dubois, H., Kirchner, C., Kirchner, H., Moreau, P.-E., Ringeissen, C., Vittek, M.: Elan. User manual,
  10. 10.
    Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equational logic. Theoretical Computer Science 236, 35–132 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Broy, M., Wirsing, M., Pepper, P.: On the algebraic definition of programming languages. ACM Trans. on Prog. Lang. and Systems 9(1), 54–99 (1987)MATHCrossRefGoogle Scholar
  12. 12.
    Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. In: Meseguer, J. (ed.) Proceedings, First International Workshop on Rewriting Logic and its Applications. Electronic Notes in Theoretical Computer Science, vol. 4, Elsevier Science, Amsterdam (1996)Google Scholar
  13. 13.
    Căzănescu, V.: Local equational logic. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 162–170. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Diaconescu, R.: Category-based Semantics for Equational and Constraint Logic Programming. PhD thesis, University of Oxford (1994)Google Scholar
  15. 15.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)MATHGoogle Scholar
  16. 16.
    Freyd, P., Kelly, G.: Categories of continuous functors. Journal of Pure and Applied Algebra 2, 169–191 (1972)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goguen, J., Malcolm, G.: Alg. Semantics of Imperative Programs. MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1), 55–101 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goguen, J., Meseguer, J.: Completeness of many-sorted equational logic. Houston Journal of Mathematics 11(3), 307–334 (1985), Preliminary versions have appeared in: SIGPLAN Notices, July 1981, Vol. 16(7), pp. 24–37; SRI Report CSL-135, May 1982; and Report CSLI-84-15, Stanford (September 1985) MATHMathSciNetGoogle Scholar
  20. 20.
    Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science 105(2), 217–273 (1992)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: algebraic specification in action, pp. 3–167. Kluwer, Dordrecht (2000)Google Scholar
  22. 22.
    Grothendieck, A.: Sur quelques points d’algébre homologique. Tôhoku Mathematical Journal 2, 119–221 (1957)MathSciNetGoogle Scholar
  23. 23.
    Herrlich, H., Strecker, G.: Category Theory. Allyn and Bacon (1973)Google Scholar
  24. 24.
    Isbell, J.R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy Matematyczne 36, 1–33 (1964)MathSciNetGoogle Scholar
  25. 25.
    Lambek, J.: Completions of Categories. Lecture Notes in Mathematics, vol. 24. Springer, Heidelberg (1966)MATHGoogle Scholar
  26. 26.
    Lane, S.M.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  27. 27.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, Springer, Heidelberg (1998)Google Scholar
  28. 28.
    Mitchell, B.: Theory of categories. Academic Press, New York (1965)MATHGoogle Scholar
  29. 29.
    Németi, I.: On notions of factorization systems and their applications to coneinjective subcategories. Periodica Mathematica Hungarica 13(3), 229–335 (1982)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Németi, I., Sain, I.: Cone-implicational subcategories and some Birkhoff-type theorems. In: Csakany, B., Fried, E., Schmidt, E. (eds.) Universal Algebra. Colloquia Mathematics Societas János Bolyai, pp. 535–578. North-Holland, Amsterdam (1981)Google Scholar
  31. 31.
    Padawitz, P., Wirsing, M.: Completeness of many-sorted equational logic revisited. Bulletin of the European Association for Theoretical Computer Science 24, 88–94 (1984)Google Scholar
  32. 32.
    Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press, Oxford (1987)MATHGoogle Scholar
  33. 33.
    Roşu, G.: A Birkhoff-like axiomatizability result for hidden algebra and coalgebra. In: Jacobs, B., Moss, L., Reichel, H., Rutten, J. (eds.) Proceedings of the First Workshop on Coalgebraic Methods in Computer Science (CMCS 1998). Electronic Notes in Theoretical Computer Science, vol. 11, pp. 179–196. Elsevier Science, Amsterdam (1998)Google Scholar
  34. 34.
    Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000),
  35. 35.
    Roşu, G.: Complete categorical equational deduction. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 528–538. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Roşu, G.: Equational axiomatizability for coalgebra. Theoretical Computer Science 260(1-2), 229–247 (2001)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Roşu, G.: Axiomatizability in inclusive equational logics. Mathematical Structures in Computer Science, (to appear)
  38. 38.
    Roşu, G., Goguen, J.: On equational Craig interpolation. Journal of Universal Computer Science 6(1), 194–200 (2000)MATHMathSciNetGoogle Scholar
  39. 39.
    Rodenburg, P.H.: A simple algebraic proof of the equational interpolation theorem. Algebra Universalis 28, 48–51 (1991)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Smolka, G., Nutt, W., Goguen, J., Meseguer, J.: Order-sorted equational computation. In: Nivat, M., Aït-Kaci, H. (eds.) Resolution of Equations in Algebraic Structures Rewriting Techniques, vol. 2, pp. 299–367. Academic, New York (1989)Google Scholar
  41. 41.
    Wand, M.: First-order identities as a defining language. Acta Informatica 14, 337–357 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Grigore Roşu
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations