Some Varieties of Equational Logic

  • Gordon Plotkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


The application of ideas from universal algebra to computer science has long been a major theme of Joseph Goguen’s research, perhaps even the major theme. One strand of this work concerns algebraic datatypes. Recently there has been some interest in what one may call algebraic computation types. As we will show, these are also given by equational theories, if one only understands the notion of equational logic in somewhat broader senses than usual.


Parametric Equation Equational Theory Unary Operation Free Algebra Operation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bloom, S.L.: Varieties of Ordered Algebras, J. Comput. Syst. Sci. 13(2), 200–212 (1976)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)MATHGoogle Scholar
  5. 5.
    Hennessy, M., Plotkin, G.D.: Full Abstraction for a Simple Parallel Programming Language. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 108–120. Springer, Heidelberg (1979)Google Scholar
  6. 6.
    Hyland, J.M.E., Levy, P.B., Plotkin, G.D., Power, A.J.: Combining Continuations with Other Effects. In: Proc. 4th. ACM SIGPLAN Continuations Workshop, University of Birmingham Report CSR-04-1, pp. 45–47 (2004)Google Scholar
  7. 7.
    Hyland, J.M.E., Plotkin, G.D., Power, A.J.: Combining Effects: Sum and Tensor. Theoretical Computer Science (2006) (to appear)Google Scholar
  8. 8.
    Hurkens, J.C., McArthur, M., Moschovakis, Y.N., Moss, L.S., Whitney, G.T.: The Logic Of Recursive Equations. JSL 63(2), 451–478 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jouannaud, J.-P.: Twenty Years Later. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 368–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Meseguer, J.: Varieties of Chain-Complete Algebras. JPAA 19, 347–383 (1980)MATHMathSciNetGoogle Scholar
  11. 11.
    Moggi, E.: Computational Lambda-Calculus and Monads. In: Proc. 4th. LICS, pp. 14–23. IEEE Press, Los Alamitos (1989)Google Scholar
  12. 12.
    Moggi, E.: Notions of Computation and Monads. Inf. Comp. 93(1), 55–92 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Plotkin, G.D.: A Domain-Theoretic Banach-Alaoglu Theorem. Festschrift for Klaus Keimel, MSCS 16, 1–13 (2006)MathSciNetGoogle Scholar
  14. 14.
    Plotkin, G.D., Power, A.J.: Adequacy for Algebraic Effects. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Plotkin, G.D., Power, A.J.: Notions of Computation Determine Monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Plotkin, G.D., Power, A.J.: Algebraic Operations and Generic Effects. Applied Categorical Structures 11(1), 69–94 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Plotkin, G.D., Power, A.J.: Power, Logic for Computational Effects: Work in Progress. In: Morris, J.M., Aziz, B., Oehl, F. (eds.) Proc. 6th. IWFM Electronic workshops in computing, BCS, Moscow (2003)Google Scholar
  18. 18.
    Plotkin, G.D., Power, A.J.: Computational Effects and Operations: an Overview. In: Proc. Domains VI. ENTCS, vol. 73, pp. 149–163. Elsevier, Amsterdam (2004)Google Scholar
  19. 19.
    Power, A.J.: Enriched Lawvere Theories. Theory and Applications of Categories 6, 83–93 (2000)MathSciNetGoogle Scholar
  20. 20.
    Power, J.: Discrete Lawvere Theories. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 348–363. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Simpson, A., Plotkin, G.: Complete Axioms for Categorical Fixed-point Operators. In: Proc. 15th. LICS, pp. 30–41. IEEE Press, Los Alamitos (2000)Google Scholar
  22. 22.
    Tix, R., Keimel, K., Plotkin, G.: Semantic Domains for Combining Probability and Non-Determinism. Verifying Concurrent Processes Using Temporal Logic 129, 1–104 (2005)MATHMathSciNetGoogle Scholar
  23. 23.
    Wagner, E.G., Wright, J.B., Goguen, J.A., Thatcher, J.W.: Some Fundamentals of Order-Algebraic Semantics. In: Mazurkiewicz, A.W. (ed.) Proc. 5th. MFCS. LNCS, vol. 45, pp. 153–168. Springer, Heidelberg (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gordon Plotkin
    • 1
  1. 1.LFCS, School of InformaticsUniversity of EdinburghUK

Personalised recommendations