Advertisement

Institutional 2-cells and Grothendieck Institutions

  • Till Mossakowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)

Abstract

We propose to use Grothendieck institutions based on 2-categorical diagrams as a basis for heterogeneous specification. We prove a number of results about colimits and (some weak variants of) exactness. This framework can also be used for obtaining proof systems for heterogeneous theories involving institution semi-morphisms.

Keywords

Natural Transformation Predicate Symbol High Order Logic Equational Logic Maximal Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J., Heering, J., Klint, P.: Module Algebra. J. ACM 37(2), 335–372 (1990)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borzyszkowski, T.: Generalized interpolation in CASL. Information Processing Letters 76(1-2), 19–24 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    CoFI (The Common Framework Initiative). In: Mosses, P.D. (ed.) CASL Reference Manual. LNCS, vol. 2960, Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Diaconescu, R.: Institution-independent Model Theory. Book draft (Ask author for a current draft) (to appear)Google Scholar
  5. 5.
    Diaconescu, R.: Grothendieck institutions. Applied categorical structures 10, 383–402 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Proceedings of a Workshop on Logical Frameworks (1991)Google Scholar
  7. 7.
    Goguen, J., Roşu, G.: Institution morphisms. Formal aspects of computing 13, 274–307 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)Google Scholar
  9. 9.
    Goguen, J.A., Burstall, R.M.: A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Goguen, J.A., Burstall, R.M.: Abstract model theory for specification and programming. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)Google Scholar
  11. 11.
    Herrlich, H., Strecker, G.: Category Theory. Allyn and Bacon, Boston (1973)MATHGoogle Scholar
  12. 12.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)MATHGoogle Scholar
  13. 13.
    Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mossakowski, T.: Relating Casl with other specification languages: the institution level. Theoretical Computer Science 286, 367–475 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Habilitation thesis, University of Bremen (2005)Google Scholar
  16. 16.
    Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof management for structured specifications. Journal of Logic and Algebraic Programming 67(1-2), 114–145 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mossakowski, T., Maeder, C., Lüttich, K., Wölfl, S.: The heterogeneous tool set (submitted for publication)Google Scholar
  18. 18.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-coalgebraic specification in CoCASL. Journal of Logic and Algebraic Programming 67(1-2), 146–197 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Roşu, G., Goguen, J.: Composing hidden information modules over inclusive institutions (2004)Google Scholar
  20. 20.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamentals algebraic tools for the semantics of computation. Part 3: Indexed categories. Theoretical Computer Science 91, 239–264 (1991)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Till Mossakowski
    • 1
  1. 1.DFKI Lab Bremen and Dept. of Computer ScienceUniversity of BremenGermany

Personalised recommendations