A Stochastic Theory of Black-Box Software Testing

  • Karl Meinke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


We introduce a mathematical framework for black-box software testing of functional correctness, based on concepts from stochastic process theory. This framework supports the analysis of two important aspects of testing, namely: (i) coverage, probabilistic correctness and reliability modelling, and (ii) test case generation. Our model corrects some technical flaws found in previous models of probabilistic correctness found in the literature. It also provides insight into the design of new testing strategies, which can be more efficient than random testing.


Interpolation Scheme Software Reliability Stochastic Theory Test Case Generation Program Correctness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [de Bakker 1980]
    de Bakker, J.W.: Mathematical Theory of Program Correctness. Prentice-Hall, Englewood Cliffs (1980)MATHGoogle Scholar
  2. [Barwise 1968]
    Barwise, J. (ed.): The Syntax and Semantics of Infinitary Languages. Lecture Notes in Mathematics, vol. 72. Springer, Heidelberg (1968)MATHGoogle Scholar
  3. [Bauer 1981]
    Bauer, H.: Probability Theory and Elements of Measure Theory. Academic Press, London (1981)MATHGoogle Scholar
  4. [Beizer 1995]
    Beizer, B.: Black-Box Testing. John Wiley, Chichester (1995)Google Scholar
  5. [Bouleau 1994]
    Bouleau, N., Lepingle, D.: Numerical Methods for Stochastic Processes. John Wiley, New York (1994)MATHGoogle Scholar
  6. [Budd 1980]
    Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Theoretical and Empirical Studies on Using Program Mutation to Test the Functional Correctness of Programs. In: 7th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 220–223 (1980)Google Scholar
  7. [Graham et al. 1989]
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  8. [Grimmet et al. 1982]
    Grimmet, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (1982)Google Scholar
  9. [Hamlet 1987]
    Hamlet, R.G.: Probable Correctness Theory. Inf. Proc. Letters 25, 17–25 (1987)CrossRefMathSciNetGoogle Scholar
  10. [Kallenberg 1997]
    Kallenberg, O.: Foundations of Modern Probability. Springer, Heidelberg (1997)MATHGoogle Scholar
  11. [Lee and Yannakakis 1996]
    Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines - a Survey. Proc. IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  12. [Loeckx et al. 1996]
    Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of Abstract Data Types. Wiley/Teubner (1996)Google Scholar
  13. [Meinke 2004]
    Meinke, K.: Automated Black-Box Testing of Functional Correctness using Function Approximation. In: Rothermel, G. (ed.) Proc. ACM SIGSOFT Int. Symp. on Software Testing and Analysis. Software Engineering Notes, vol. 29(4), pp. 143–153. ACM Press, New York (2004)CrossRefGoogle Scholar
  14. [Miller et al. 1992]
    Miller, K.W., Morell, L.J., Noonan, R.E., Park, S.K., Nicol, D.M., Murrill, B.W., Voas, J.M.: Estimating the Probability of Failure when Testing Reveals no Failures. IEEE Trans. Soft. Eng. 18(1), 33–43 (1992)CrossRefGoogle Scholar
  15. [Moore 1956]
    Moore, E.F.: Gedanken-experiments on Sequential Machines. Ann. Math. Studies, vol. 34, pp. 129–153. Princeton Univ. Press, Princeton (1956)Google Scholar
  16. [Thayer et al. 1978]
    Thayer, T.A., Lipow, M., Nelson, E.C.: Software Reliability. North Holland, New York (1978)Google Scholar
  17. [Weiss and Weyuker 1988]
    Weiss, S.N., Weyuker, E.J.: An Extended Domain-Based Model of Software Reliability. IEEE Trans. Soft. Eng. 14(10), 1512–1524 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karl Meinke
    • 1
  1. 1.School of Computer Science and CommunicationRoyal Institute of TechnologyStockholmSweden

Personalised recommendations