Iterative Lexicographic Path Orders

  • Jan Willem Klop
  • Vincent van Oostrom
  • Roel de Vrijer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


We relate Kamin and Lévy’s original presentation of lexicographic path orders (LPO), using an inductive definition, to a presentation, which we will refer to as iterative lexicographic path orders (ILPO), based on Bergstra and Klop’s definition of recursive path orders by way of an auxiliary term rewriting sytem.


Function Symbol Reduction Order Atomic Decomposition Transitive Relation Lexicographic Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dershowitz, N.: Orderings for term rewriting systems. TCS 17(3), 279–301 (1982)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Marcone, A.: Fine analysis of the quasi-orderings on the power set. Order 18, 339–347 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bergstra, J., Klop, J.: Algebra of communicating processes. TCS 37(1), 171–199 (1985)MathSciNetGoogle Scholar
  4. 4.
    Bergstra, J., Klop, J., Middeldorp, A.: Termherschrijfsystemen. In: Programmatuurkunde, Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  5. 5.
    Buchholz, W.: Proof-theoretic analysis of termination proofs. APAL 75(1-2), 57–65 (1995)MATHMathSciNetGoogle Scholar
  6. 6.
    Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. University of Illinois (1980)Google Scholar
  7. 7.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  8. 8.
    Geser, A.: Relative Termination. PhD thesis, Universität Passau, Germany (1990)Google Scholar
  9. 9.
    Klop, J.: Term rewriting systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Background: Computational Structures, vol. 2, pp. 1–116. Oxford University Press, Oxford (1992)Google Scholar
  10. 10.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, Cambridge University Press, Cambridge (2003)Google Scholar
  11. 11.
    Dedekind, R.: Was sind und was sollen die Zahlen?, Brunswick (1888)Google Scholar
  12. 12.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    Jouannaud, J.P., Rubio, A.: The higher-order recursive path ordering. In: 14th Annual IEEE Symposium on Logic in Computer Science, pp. 402–411. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  14. 14.
    Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science, vol. 56. Cambridge University Press, Cambridge (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Persson, H.: Type Theory and the Integrated Logic of Programs. PhD thesis, Chalmers, Sweden (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jan Willem Klop
    • 1
    • 2
    • 3
  • Vincent van Oostrom
    • 4
  • Roel de Vrijer
    • 1
  1. 1.Department of Theoretical Computer ScienceVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Computer ScienceRadboud Universiteit NijmegenNijmegenThe Netherlands
  3. 3.CWIAmsterdamThe Netherlands
  4. 4.Department of PhilosophyUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations