Completion Is an Instance of Abstract Canonical System Inference

  • Guillaume Burel
  • Claude Kirchner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


Abstract canonical systems and inference (ACSI) were introduced to formalize the intuitive notions of good proof and good inference appearing typically in first-order logic or in Knuth-Bendix like completion procedures.

Since this abstract framework is intended to be generic, it is of fundamental interest to show its adequacy to represent the main systems of interest. This has been done for ground completion (where all equational axioms are ground) but was still an open question for the general completion process.

By showing that the standard completion is an instance of the ACSI framework we close the question. For this purpose, two proof representations, proof terms and proofs by replacement, are compared to built a proof ordering that provides an instantiation adapted to the abstract canonical system framework.


Logic in computer science rewriting and deduction completion good proof proof representation canonicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiguier, M., Bahrami, D.: Structures for abstract rewriting. Journal of Automated Reasoning (2006) (to appear)Google Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Bachmair, L.: Proof methods for equational theories. PhD thesis, University of Illinois, Urbana-Champaign (Ill. USA) (1987), Revised version (August 1988)Google Scholar
  4. 4.
    Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. Journal of Association for Computing Machinery 41(2), 236–276 (1994)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, ch. 2, pp. 19–99. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  6. 6.
    Bonacina, M.P., Dershowitz, N.: Abstract Canonical Inference. ACM Transactions on Computational Logic (2006) (to appear)Google Scholar
  7. 7.
    Bonacina, M.P., Hsiang, J.: On rewrite programs: semantics and relationship with Prolog. Journal of Logic Programming 14(1-2), 155–180 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting logic point of view. Theoretical Computer Science 2(285), 155–185 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Buchberger, B.: An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. PhD thesis, University of Inssbruck (Austria) (1965) (in German)Google Scholar
  10. 10.
    Buchberger, B.: A critical-pair/completion algorithm for finitely generated ideals in rings. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 137–161. Springer, Heidelberg (1984)Google Scholar
  11. 11.
    Bündgen, R.: Simulating Buchberger‘s algorithm by Knuth-Bendix completion. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 386–397. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Burel, G.: Systèmes Canoniques Abstraits: Application à la Déduction Naturelle et à la Complétion. Master’s thesis, Université Denis Diderot – Paris 7 (2005)Google Scholar
  13. 13.
    Cirstea, H., Kirchner, C.: The rewriting calculus — Part I and II. Logic Journal of the Interest Group in Pure and Applied Logics 9(3), 427–498 (2001)MathSciNetGoogle Scholar
  14. 14.
    Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. In: Meseguer, J. (ed.) Proceedings of the first international workshop on rewriting logic, Asilomar, California, September 1996. Electronic Notes in Theoretical Computer Science, vol. 4 (1996)Google Scholar
  15. 15.
    Dershowitz, N.: Computing with rewrite systems. Information and Control 65(2-3), 122–157 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dershowitz, N.: Canonicity. Electronic Notes in Theoretical Computer Science 86(1) (2003)Google Scholar
  17. 17.
    Dershowitz, N., Kirchner, C.: Abstract saturation-based inference. In: Kolaitis, P. (ed.) Proceedings of LICS 2003, Ottawa, Ontario (June 2003) ieeeGoogle Scholar
  18. 18.
    Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theorical Computer Science (2006) (to appear)Google Scholar
  19. 19.
    Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Futatsugi, K., Nakagawa, A.: An overview of CAFE specification environment – an algebraic approach for creating, verifying, and maintaining formal specifications over networks. In: Proceedings of the 1st IEEE Int. Conference on Formal Engineering Methods (1997)Google Scholar
  21. 21.
    Goguen, J.A.: How to prove algebraic inductive hypotheses without induction, with applications to the correctness of data type implementation. In: Bibel, W. (ed.) CADE 1980. LNCS, vol. 87, pp. 356–373. Springer, Heidelberg (1980)Google Scholar
  22. 22.
    Goguen, J.A., Malcolm, G. (eds.): Software Engineering with OBJ: algebraic specification in practice. Advances in Formal Methods, vol. 2. Kluwer Academic Publishers, Boston (2000)Google Scholar
  23. 23.
    Goguen, J.A., Meseguer, J.: Eqlog: Equality, types, and generic modules for logic programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming: Functions, Relations, and Equations, pp. 295–363. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  24. 24.
    Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: The transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM 27(4), 797–821 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Huet, G.: A complete proof of correctness of the Knuth–Bendix completion algorithm. Journal of Computer and System Sciences 23(1), 11–21 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Huet, G., Lévy, J.-J.: Computations in orthogonal rewriting systems, I. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic. ch. 11, pp. 395–414. The MIT press, Cambridge (1991)Google Scholar
  28. 28.
    Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM Journal of Computing 15(4), 1155–1194 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kirchner, C., Kirchner, H.: Rewriting, solving, proving (1999), A preliminary version of a book available at
  30. 30.
    Kirchner, C., Kirchner, H., Vittek, M.: Designing constraint logic programming languages using computational systems. In: Van Hentenryck, P., Saraswat, V. (eds.) Principles and Practice of Constraint Programming. The Newport Papers. ch. 8, pp. 131–158. The MIT press, Cambridge (1995)Google Scholar
  31. 31.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)Google Scholar
  32. 32.
    Lankford, D.: Canonical inference. Technical report, Louisiana Tech. University (1975)Google Scholar
  33. 33.
    Le Chenadec, P.: Canonical Forms in Finitely Presented Algebras. John Wiley Sons, Chichester (1986)zbMATHGoogle Scholar
  34. 34.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Musser, D.: On proving inductive properties of abstract data types. In: Proceedings, Symposium on Principles of Programming Languages. Association for Computing Machinery, vol. 7 (1980)Google Scholar
  36. 36.
    Peterson, G., Stickel, M.: Complete sets of reductions for some equational theories. Journal of the ACM 28, 233–264 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)zbMATHCrossRefGoogle Scholar
  38. 38.
    Rubio, A., Nieuwenhuis, R.: A total AC-compatible ordering based on RPO. Theoretical Computer Science 142(2), 209–227 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Schorlemmer, W.M.: Rewriting logic as a logic of special relations. Electr. Notes Theor. Comput. Sci. 15 (1998)Google Scholar
  40. 40.
    Stokkermans, K.: A categorical formulation for critical-pair/completion procedures. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 328–342. Springer, Heidelberg (1993)Google Scholar
  41. 41.
    Struth, G.: Canonical Transformations in Algebra, Universal Algebra and Logic. Dissertation, Institut für Informatik, Universität des Saarlandes, Saarbrücken, Germany (June 1998)Google Scholar
  42. 42.
    Winkler, F.: Knuth-Bendix procedure and Buchberger algorithm - A synthesis. In: Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, Portland, Oregon, USA, pp. 55–67. ACM Press, New York (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guillaume Burel
    • 1
  • Claude Kirchner
    • 2
  1. 1.Ecole Normale Supérieure de Lyon & LORIA 
  2. 2.INRIA & LORIA 

Personalised recommendations