Sheaves and Structures of Transition Systems

  • Grant Malcolm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


We present a way of viewing labelled transition systems as sheaves: these can be thought of as systems of observations over a topology, with the property that consistent local observations can be pasted together into global observations. We show how this approach extends to hierarchical structures of labelled transition systems, where behaviour is taken as a limit construction. Our examples show that this is particularly effective when transition systems have structured states.


Transition System Hierarchical System Label Transition System Sheaf Theory Limit Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category Theory for Computing Science. Prentice-Hall, Englewood Cliffs (1990)MATHGoogle Scholar
  2. 2.
    Bunge, M., Fiore, M.: Unique factorization lifting functors. Journal of Pure and Applied Algebra (2002)Google Scholar
  3. 3.
    Cattani, G.L., Winskel, G.: Presheaf models for concurrency. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 58–75. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Cîrstea, C.: A distributed semantics for FOOPS. Technical Report PRG-TR- 20-95, Programming Research Group, University of Oxford (1995)Google Scholar
  5. 5.
    Dubey, R.: On a general definition of safety and liveness. Master’s thesis, School of Electrical Engineering and Comp. Sci., Washington State Univ. (1991)Google Scholar
  6. 6.
    Ehrich, H.-D., Goguen, J.A., Sernadas, A.: A categorial theory of objects as observed processes. In: de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489, Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Goguen, J.A.: Mathematical representation of hierarchically organised systems. In: Attinger, E.O. (ed.) Global Systems Dynamics, pp. 111–129 (1970)Google Scholar
  8. 8.
    Goguen, J.A.: Objects. International Journal of General Systems 1, 237–243 (1975)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Goguen, J.A.: Complexity of hierarchically organized systems and the structure of musical experiences. Int. Journal of General Systems 3, 233–251 (1977)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Goguen, J.A.: A categorical manifesto. Mathematical Structures in Computer Science 1(1), 49–67 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goguen, J.A.: Sheaf semantics for concurrent interacting objects. Mathematical Structures in Computer Science 11, 159–191 (1992)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Goguen, J.A.: Musical qualia, context, time, and emotion. Journal of Consciousness Studies 11, 117–147 (2004)Google Scholar
  13. 13.
    Gray, J.: Fragments of the history of sheaf theory. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, Springer, Heidelberg (1980)Google Scholar
  14. 14.
    Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. In: Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge University Press, Cambridge (1986)Google Scholar
  15. 15.
    Lane, S.M., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Heidelberg (1992)MATHGoogle Scholar
  16. 16.
    Lilius, J.: A sheaf semantics for Petri nets. Technical Report A23, Dept. of Computer Science, Helsinki University of Technology (1993)Google Scholar
  17. 17.
    Malcolm, G.: Interconnection of object specifications. In: Goldsack, S., Kent, S. (eds.) Formal Methods and Object Technology. Springer Workshops in Computing (1996)Google Scholar
  18. 18.
    Monteiro, L.: Observation systems. Electronic Notes in Theoretical Computer Science 33 (2000)Google Scholar
  19. 19.
    Monteiro, L., Pereira, F.: A sheaf-theoretic model of concurrency. In: Proc. Logic in Computer Science (LICS 1986), IEEE Press, Los Alamitos (1986)Google Scholar
  20. 20.
    Tarlecki, A., Burstall, R., Goguen, J.: Some fundamental algebraic tools for the semantics of computation, part 3: Indexed categories. Theoretical Computer Science 91, 239–264 (1991)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tennison, B.R.: Sheaf Theory. London Mathematical Society Lecture Notes, vol. 20. Cambridge University Press, Cambridge (1975)MATHCrossRefGoogle Scholar
  22. 22.
    Winskel, G., Nielsen, W.: Models for concurrency. Technical Report DAIMI PB – 463, Computer Science Department, Aarhus University (1993)Google Scholar
  23. 23.
    Winskel, G.: A compositional proof system on a category of labelled transition systems. Information and Computation 87, 2–57 (1990)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S. (ed.) Handbook of Logic and the Foundations of Computer Science, vol. 4, Oxford University Press, Oxford (1995)Google Scholar
  25. 25.
    Wolfram, D.A., Goguen, J.A.: A sheaf semantics for FOOPS expressions (extended abstract). In: Tokoro, M., Wegner, P., Nierstrasz, O. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 81–98. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Grant Malcolm
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations