A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages

  • Bart Jacobs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


This papers reviews the classical theory of deterministic automata and regular languages from a categorical perspective. The basis is formed by Rutten’s description of the Brzozowski automaton structure in a coalgebraic framework. We enlarge the framework to a so-called bialgebraic one, by including algebras together with suitable distributive laws connecting the algebraic and coalgebraic structure of regular expressions and languages. This culminates in a reformulated proof via finality of Kozen’s completeness result. It yields a complete axiomatisation of observational equivalence (bisimilarity) on regular expressions. We suggest that this situation is paradigmatic for (theoretical) computer science as the study of “generated behaviour”.


Regular Expression Natural Transformation Operational Semantic Follow Diagram Commute Commutative Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.A., Manes, E.G.: Foundations of system theory: Decomposable systems. Automatica 10, 285–302 (1974)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arbib, M.A., Manes, E.G.: Algebraic Approaches to Program Semantics. In: Texts and Monogr. Comp. Sci., Springer, Heidelberg (1986)Google Scholar
  3. 3.
    de Bakker, J.W., Vink, E.: Control Flow Semantics. MIT Press, Cambridge (1996)MATHGoogle Scholar
  4. 4.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985), Revised and corrected version available from MATHGoogle Scholar
  5. 5.
    Bartels, F.: On generalised coinduction and probabilistic specification formats. Distributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam (2004)Google Scholar
  6. 6.
    Beck, J.: Distributive laws. In: Eckman, B. (ed.) Seminar on Triples and Categorical Homolgy Theory. Lect. Notes Math., vol. 80, pp. 119–140. Springer, Berlin (1969)CrossRefGoogle Scholar
  7. 7.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journ. ACM 42(1), 232–268 (1988)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Brzozowski, J.A.: Derivatives of regular expressions. Journ. ACM 11(4), 481–494 (1964)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)MATHGoogle Scholar
  10. 10.
    Fokkink, W.: On the completeness of the equations for the Kleene star in bisimulation. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 180–194. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Goguen, J.A.: Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78(5), 777–783 (1972)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goguen, J.A.: Realization is universal. Math. Syst. Theor. 6(4), 359–374 (1973)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goguen, J.A.: Discrete-time machines in closed monoidal categories. I. Journ. Comp. Syst. Sci. 10, 1–43 (1975)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comp. 100(2), 202–260 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf. Comp. 145, 107–152 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jacobs, B.: Objects and classes, co-algebraically. In: Freitag, B., Jones, C.B., Lengauer, C., Schek, H.-J. (eds.) Object-Orientation with Parallelism and Persistence, pp. 83–103. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  17. 17.
    Jacobs, B.: Exercises in coalgebraic specification. In: Blackhouse, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. Inf. & Comp. 204(4), 561–587 (2006), Earlier version in number 106 in Elect. Notes in Theor. Comp. Sci.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc. 7, 294–297 (1975)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kick, M.: Bialgebraic modelling of timed processes. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 525–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  22. 22.
    Koushik, S., Rosu, G.: Generating optimal monitors for extended regular expressions. In: Runtime Verification (RV 2003). Elect. Notes in Theor. Comp. Sci., vol. 89(2), Elsevier, Amsterdam (2003)Google Scholar
  23. 23.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comp. 110(2), 366–390 (1994)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kozen, D.: Myhill-nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  26. 26.
    Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and copointed endofunctors, monads and comonads. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science. Elect. Notes in Theor. Comp. Sci. vol. 33, Elsevier, Amsterdam (2000)Google Scholar
  27. 27.
    Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comp. Sci. 54(2-3), 267–276 (1987)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Perrin, D.: Finite automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 1–55. Elsevier/MIT Press (1990)Google Scholar
  29. 29.
    Reichel, H.: An approach to object semantics based on terminal co-algebras. Math. Struct. Comp. Sci. 5, 129–152 (1995)MATHMathSciNetGoogle Scholar
  30. 30.
    Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. 31.
    Rutten, J.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theor. Comp. Sci. 308, 1–53 (2003)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Rutten, J., Turi, D.: Initial algebra and final coalgebra semantics for concurrency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 530–582. Springer, Heidelberg (1994)Google Scholar
  33. 33.
    Rutten, J.J.M.M.: Automata, power series, and coinduction: Taking input derivatives seriously (extended abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 645–654. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  34. 34.
    Turi, D.: Functorial operational semantics and its denotational dual. PhD thesis, Free Univ. Amsterdam (1996)Google Scholar
  35. 35.
    Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, pp. 280–291. IEEE, Computer Science Press (1997)Google Scholar
  36. 36.
    Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic Journ. Comput. 8(3), 366–390 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bart Jacobs
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations