Proving Behavioral Refinements of COL-specifications

  • Michel Bidoit
  • Rolf Hennicker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4060)


The COL institution (constructor-based observational logic) has been introduced as a formal framework to specify both generation- and observation-oriented properties of software systems. In this paper we consider behavioral refinement relations between COL-specifications taking into account implementation constructions. We propose a general strategy for proving the correctness of such refinements by reduction to (standard) first-order theorem proving with induction. Technically our strategy relies on appropriate proof rules and on a lifting construction to encode the reachability and observability notions of the COL institution.


Proof Obligation Proof Rule Observational Equality Reduct Functor Signature Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.): Algebraic Foundations of Systems Specification. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bidoit, M., Cengarle, M.-V., Hennicker, R.: Proof systems for structured specifications and their refinements. In: [1], ch. 11, pp. 385–433. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Bidoit, M., Hennicker, R.: Modular correctness proofs of behavioural implementations. Acta Informatica 35, 951–1005 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R.: Constructor-based observational logic. Journal of Logic and Algebraic Programming 67(1-2), 3–51 (2006), Preliminary version, available at MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bidoit, M., Hennicker, R.: Behavioural theories and the proof of behavioural properties. Theoretical Computer Science 165(1), 3–55 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bidoit, M., Hennicker, R.: Observer complete definitions are behaviourally coherent. In: Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods, Toulouse, France, Septmeber, pp. 83–94. THETA (1999)Google Scholar
  7. 7.
    Bidoit, M., Hennicker, R.: Externalized and internalized notions of behavioral refinement. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 334–350. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Bidoit, M., Mosses, P.D.: CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)MATHGoogle Scholar
  9. 9.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing. World Scientific, Singapore (1998)Google Scholar
  10. 10.
    Ehrig, H., Kreowski, H.-J.: Refinement and implementation. In: [1]. ch:7, pp. 201–242. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Goguen, J., Meseguer, J.A.: Universal realization, persistent interconnection and implementation of abstract modules. In: Proc. ICALP 1982. LNCS, vol. 140, pp. 265–281. Springer, Heidelberg (1982)Google Scholar
  12. 12.
    Goguen, J., Roşu, G.: Hiding more of hidden algebra. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1704–1719. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of Abstract Data Types. Wiley and Teubner (1996)Google Scholar
  15. 15.
    Malcolm, G., Goguen, J.: Proving correctness of refinement and implementation. Technical Report PRG-114, Oxford University Computing Laboratory (1994)Google Scholar
  16. 16.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)MATHGoogle Scholar
  17. 17.
    Orejas, F., Navarro, M., Sanchez, A.: Implementation and behavioural equivalence. In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types 1991 and COMPASS 1991. LNCS, vol. 655, pp. 93–125. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Sannella, D., Tarlecki, A.: On observational equivalence and algebraic specification. Journal of Computer and System Sciences 34, 150–178 (1987)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sannella, D.T., Tarlecki, A.: Toward formal development of programs from algebraic specifications: implementation revisited. Acta Informatica 25, 233–281 (1988)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schoett, O.: Data abstraction and correctness of modular programming. Technical Report CST-42-87, University of Edinburgh (1987)Google Scholar
  21. 21.
    Tarlecki, A.: Institutions: An Abstract Framework for Formal Specification. In: [1], ch. 4, pp. 105–130. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Wirsing, M.: Algebraic Specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 3, pp. 676–788. Elsevier Science Publishers B.V, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michel Bidoit
    • 1
  • Rolf Hennicker
    • 2
  1. 1.Laboratoire Spécification et Vérification (LSV)CNRS & ENS de CachanFrance
  2. 2.Institut für InformatikLudwig-Maximilians-Universität MünchenGermany

Personalised recommendations