Soft Computing for Assessing the Quality of Colour Prints

  • Antanas Verikas
  • Marija Bacauskiene
  • Carl-Magnus Nilsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


We present a soft computing techniques based option for assessing the quality of colour prints. The values of several print distortion attributes are evaluated by employing data clustering, support vector regression, and image analysis procedures and then aggregated into an overall print quality measure using fuzzy integration. The experimental investigations performed have shown that the print quality evaluations provided by the measure correlate well with the print quality rankings obtained from the experts. The developed tools are successfully used in a printing shop for routine print quality control.


Support Vector Regression Printing Process Fuzzy Measure Colour Patch Halftone Image 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tchan, J., Thompson, R.C., Manning, A.: A computational model of print-quality perception. Expert Systems with Applications 17, 243–256 (1999)CrossRefGoogle Scholar
  2. 2.
    Luo, J., Zhang, Z.: Automatic colour printing inspection by image processing. Journal of Materials Processing Technology 139, 373–378 (2003)CrossRefGoogle Scholar
  3. 3.
    Trepanier, R.J., Jordan, B.D., Nguyen, N.G.: Specific perimeter: a statistic for assessing formation and print quality by image analysis. TAPPI Journal 81, 191–196 (1998)Google Scholar
  4. 4.
    Verikas, A., Malmqvist, K., Bergman, L.: Neural networks based colour measuring for process monitoring and control in multicoloured newspaper printing. Neural Computing & Applications 9, 227–242 (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Verikas, A., Bacauskiene, M.: Image analysis and fuzzy integration applied to print quality assessment. Cybernetics and Systems 36, 549–564 (2005)CrossRefMATHGoogle Scholar
  6. 6.
    Wyszecki, G., Stiles, W.S.: Color Science. In: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. John Wiley & Sons, New York (1982)Google Scholar
  7. 7.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  8. 8.
    Bergman, L., Verikas, A., Bacauskiene, M.: Unsupervised colour image segmentation applied to printing quality assessment. Image and Vision Computing 23, 417–425 (2005)CrossRefGoogle Scholar
  9. 9.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Analysis Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  10. 10.
    Verikas, A., Bacauskiene, M.: Estimating ink density from colour camera RGB values by the local kernel ridge regression. Engineering Applications of Artificial Intelligence 19 (2006)Google Scholar
  11. 11.
    Sugeno, M.: Fuzzy measures and fuzzy integrals: A survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Process, pp. 89–102. North-Holland Pub., Amsterdam (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antanas Verikas
    • 1
    • 2
  • Marija Bacauskiene
    • 2
  • Carl-Magnus Nilsson
    • 1
  1. 1.Intelligent Systems LaboratoryHalmstad UniversityHalmstadSweden
  2. 2.Department of Applied ElectronicsKaunas University of TechnologyKaunasLithuania

Personalised recommendations