Locality-Convolution Kernel and Its Application to Dependency Parse Ranking

  • Evgeni Tsivtsivadze
  • Tapio Pahikkala
  • Jorma Boberg
  • Tapio Salakoski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


We propose a Locality-Convolution (LC) kernel in application to dependency parse ranking. The LC kernel measures parse similarities locally, within a small window constructed around each matching feature. Inside the window it makes use of a position sensitive function to take into account the order of the feature appearance. The similarity between two windows is calculated by computing the product of their common attributes and the kernel value is the sum of the window similarities. We applied the introduced kernel together with Regularized Least-Squares (RLS) algorithm to a dataset containing dependency parses obtained from a manually annotated biomedical corpus of 1100 sentences. Our experiments show that RLS with LC kernel performs better than the baseline method. The results outline the importance of local correlations and the order of feature appearance within the parse. Final validation demonstrates statistically significant increase in parse ranking performance.


Reproduce Kernel Hilbert Space Ranking Performance Convolution Kernel Local Correlation Graph Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS, pp. 625–632. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Suzuki, J., Hirao, T., Sasaki, Y., Maeda, E.: Hierarchical directed acyclic graph kernel: Methods for structured natural language data. In: ACL, pp. 32–39 (2003)Google Scholar
  5. 5.
    Suzuki, J., Isozaki, H., Maeda, E.: Convolution kernels with feature selection for natural language processing tasks. In: ACL, pp. 119–126 (2004)Google Scholar
  6. 6.
    Sleator, D.D., Temperley, D.: Parsing english with a link grammar. Technical Report CMU-CS-91-196, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA (1991)Google Scholar
  7. 7.
    Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., Järvinen, J., Salakoski, T., Koivula, J.: Analysis of link grammar on biomedical dependency corpus targeted at protein-protein interactions. In: Collier, N., Ruch, P., Nazarenko, A. (eds.) Proceedings of the JNLPBA workshop at COLING 2004, Geneva, pp. 15–21 (2004)Google Scholar
  8. 8.
    Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.: Regularized least-squares for parse ranking. In: Proceedings of the 6th International Symposium on Intelligent Data Analysis, pp. 464–474. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Amer. Math. Soc. Notice 50, 537–544 (2003)MATHMathSciNetGoogle Scholar
  10. 10.
    Kendall, M.G.: Rank Correlation Methods, 4th edn. Griffin, London (1970)MATHGoogle Scholar
  11. 11.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)Google Scholar
  12. 12.
    Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, pp. 416–426. Springer, Berlin (2001)Google Scholar
  13. 13.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)MATHGoogle Scholar
  14. 14.
    Pahikkala, T., Pyysalo, S., Ginter, F., Boberg, J., Järvinen, J., Salakoski, T.: Kernels incorporating word positional information in natural language disambiguation tasks. In: Russell, I., Markov, Z. (eds.) Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, pp. 442–447. AAAI Press, Menlo Park (2005), Google Scholar
  15. 15.
    Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.: Improving the performance of bayesian and support vector classifiers in word sense disambiguation using positional information. In: Honkela, T., Könönen, V., Pöllä, M., Simula, O. (eds.) Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, Espoo, Finland, Helsinki University of Technology, pp. 90–97 (2005)Google Scholar
  16. 16.
    Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., Muller, K.R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Evgeni Tsivtsivadze
    • 1
  • Tapio Pahikkala
    • 1
  • Jorma Boberg
    • 1
  • Tapio Salakoski
    • 1
  1. 1.Turku Centre for Computer Science (TUCS), Department of Information TechnologyUniversity of TurkuTurkuFinland

Personalised recommendations