Head Detection and Tracking for the Car Occupant’s Pose Recognition

  • Jeong-Eom Lee
  • Yong-Guk Kim
  • Sang-Jun Kim
  • Min-Soo Jang
  • Seok-Joo Lee
  • Min Chul Park
  • Gwi-Tae Park
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


This paper describes a Vision-based Occupant Pose Recognition (VOPR) system, which can ensure a safe airbag deployment. Head detection and its tracking are necessary for occupant’s pose recognition in the car, since the position of occupant’s head provides valuable information, such as his pose, size, position, and so on. We use the stereo cameras to extract a disparity map. Against variable lighting conditions including the night drive, we adopt infrared illumination as well as normal one. Results suggest that VOPR system is reliable and performs reasonably well.


Support Vector Machine Stereo Camera Video Database Head Tracking Head Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  3. 3.
  4. 4.
    Blake, A., Isard, M.: Active Contours. Springer, London (1998)CrossRefGoogle Scholar
  5. 5.
    Baxes, G.: Digital Image Processing: principles and applications. John Wiley & Sons, New York (1994)Google Scholar
  6. 6.
    Klomark, M.: Occupant Detection using computer vision, master’s thesis (2000)Google Scholar
  7. 7.
    Owechkp, Y., Srinivasa, N., Medasani, S., Boscolo, R.: Vision-Based Fusion System for Smart Airbag Applications. In: IEEE, Intelligent Vehicle Symposium, vol. 1, pp. 245–250 (2002)Google Scholar
  8. 8.
    Alefs, B., Clabian, M., Bischof, H., Kropatsh, W., Khairallah, F.: Robust Occupancy Detection from Stereo Images. In: IEEE Intelligent Transportation Systems Conference (2004)Google Scholar
  9. 9.
    Trivedi, M.M., Cheng, S., Childers, E., Krotosky, S.: Occupant Posture Analysis with Stereo and Thermal Infrared Video: Algorithms and Experimental Evaluation. IEEE Transactions on Vehicular Tech. Special Issue on In-Vehicle Vision Systems 53(6) (2004)Google Scholar
  10. 10.
    Zhang, L., Chen, L., Vertiz, A., Balci, R.: Survey of Front Passenger Posture Usage in Passenger Vehicles. In: 2004 SAE World Congress (2004)Google Scholar
  11. 11.
    Sun, C.: A Fast Stereo Matching Method. Digital Image Computing: Techniques and Applications, 95–100 (1997)Google Scholar
  12. 12.
    Patil, R., Rybski, P.E., Kanade, T., Veloso, M.M.: People Detection and Tracking in High Resolution Panoramic Video Mosaic. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 1, pp. 1323–1328 (2004)Google Scholar
  13. 13.
    Birchfield, S.: Elliptical Head Tracking Using Intensity Gradients and Color Histograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 232–237 (June 1998)Google Scholar
  14. 14.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. On Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  15. 15.
    Kim, Y.G., Lee, J.E., Kim, S.J., Choi, S.M., Park, G.T.: Head Detection of the Car Occupant based on Contour Models and Support Vector Machines. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 59–61. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jeong-Eom Lee
    • 1
  • Yong-Guk Kim
    • 3
  • Sang-Jun Kim
    • 1
    • 2
  • Min-Soo Jang
    • 1
  • Seok-Joo Lee
    • 4
  • Min Chul Park
    • 5
  • Gwi-Tae Park
    • 1
  1. 1.Dept. of Electrical EngineeringKorea
  2. 2.Interdisciplinary Programs of MechatronicsKorea UniversitySeoulKorea
  3. 3.School of Computer EngineeringSejong UniversitySeoulKorea
  4. 4.Hyundai Autonet Co. Ltd.Korea
  5. 5.Systems Technology Division, KISTKorea

Personalised recommendations