An Application of Random and Hammersley Sampling Methods to Iris Recognition

  • Luis E. Garza Castañón
  • Saúl Montes de Oca
  • Rubén Morales-Menéndez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


We present a new approach for iris recognition based on a sampling scheme. Iris recognition is a method to identify persons, based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: image acquisition and preprocessing, iris localization and extraction, iris features characterization, and comparison and matching. The main contribution in this work is in the step of characterization of iris features by using sampling methods and accumulated histograms. These histograms are built from data coming from sampled subimages of iris. In the comparison and matching step, a comparison is made between accumulated histograms of couples of iris samples, and a decision of accept/reject is taken based on samples differences and on a threshold calculated experimentally. We tested two sampling methods: random and Hammersley, and conduct experiments with UBIRIS database. Under certain conditions we found a rate of successful identifications in the order of 100 %.


Iris Image Histogram Equalization Texture Synthesis Iris Feature Iris Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boles, W., Boashash, B.: Iris Recognition for Biometric Identification using dyadic wavelet transform zero-crossing. IEEE Transactions on Signal Processing 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.: How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  3. 3.
    Dobes, M., Machala, L., Tichasvky, P., Pospisil, J.: Human Eye Iris Recognition Using The Mutual Information. Optik 9, 399–404 (2004)CrossRefGoogle Scholar
  4. 4.
    Efros, A., Leung, T.: Texture Synthesis by Non-Parametric Sampling. In: Proceedings of the 7th IEEE International Conference on Computer Vision, September 1999, vol. 2, pp. 1033–1038 (1999)Google Scholar
  5. 5.
    Hammersley, J.: Monte Carlo Methods for Solving Multivariate Problems. Annals of New York Academy of Science 86, 844–874 (1960)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Huang, J., Wang, Y., Tan, T., Cui, J.: A New Iris Segmentation Method for Iris Recognition System. In: Proceedings of the 17th International Conference on Pattern Recognition, pp. 554–557 (2004)Google Scholar
  7. 7.
    Jain, A., Ross, A., Prabhakar, A.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)CrossRefGoogle Scholar
  8. 8.
    Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.: Real-time Texture Synthesis by Patch-based Sampling. ACM Transactions on Graphics 20(3), 127–150 (2001)CrossRefGoogle Scholar
  9. 9.
    Ma, L., Wang, Y., Tan, T., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  10. 10.
    de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris Recognition for Biometric Identification using dyadic wavelet transform zero-crossing. In: Proceedings of the IEEE 35th International Conference on Security Technology, pp. 272–277 (2001)Google Scholar
  11. 11.
    Negin, M., Chmielewski, T., Salganicoff, M., Camus, T., Cahn, U., Venetianer, P., Zhang, G.: An Iris Biometric System for Public and Personal Use. Computer 33(2), 70–75 (2000)CrossRefGoogle Scholar
  12. 12.
    Proenca, H., Alexandre, L.: UBIRIS: A Noisy Iris Image Database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Wildes, R.: Iris Recognition: An Emerging Biometric Technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis E. Garza Castañón
    • 1
  • Saúl Montes de Oca
    • 2
  • Rubén Morales-Menéndez
    • 1
  1. 1.Department of Mechatronics and Automation
  2. 2.Automation Graduate Program StudentMonterreyMéxico

Personalised recommendations