Advertisement

Modeling and Multi-agent Specification of IF-Based Distributed Goal Ontologies

Conference paper
  • 1.1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)

Abstract

The concept of service is central in the design of distributed systems. In this approach for example, the web is developing web services and grid services. Nowadays, it is essential to take into account the crucial aspects of the dynamic services, that is to say their ability to adapt and to be composed in order to complete their task. To this end, the first part of the present paper aims to describe the implementation of a methodology which deals the automatic composition of services in distributed systems. Each service is related to a goal and is represented by a functional model called an Ontology. The model relies on a core reasoning process between interacting functional components of the complex system following the Information Flow (IF) approach. Afterwards, in the second part, we propose an algorithm describing the mechanism of the dynamic composition, basing on the first part and using Multi Agent System (MAS), where the agents support the functional components of the complex systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J., Seligman, J.: Information Flow. Cambridge tracts in Theoretical Computer Science, vol. 44. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    Castefranchi, C., Cesta, A., Miceli, M.: Dependence Realtions in Multi-agent systems. In: Demazeau, Y., Werner, E. (eds.) Decentralized AI. Elsevier, Amsterdam (1992)Google Scholar
  3. 3.
    Dapoigny, R., Benoit, E., Foulloy, L.: Functional Ontology for Intelligent Instruments. In: Zhong, N., et al. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 88–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Dapoigny, R., Barlatier, P., Benoit, E., Foulloy, L.: Formal Goal generation for Intelligent Control systems. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 712–721. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Dapoigny, R., Barlatier, P., Mellal, N., Benoit, E., Foulloy, L.: Inferential Knowledge Sharing with Goal Hierarchies in Distributed Engineering Systems. In: Procs. of IIAI 2005, Pune (India) (2005)Google Scholar
  6. 6.
    Dapoigny, R., Barlatier, P., Benoit, E., Foulloy, L.: Formal Goal generation for Intelligient Control systems. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS, vol. 3533, pp. 712–721. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Dapoigny, R., Barlatier, P., Mellal, N., Benoit, E., Foulloy, L.: Goal integration for service inter-operability of engineering systems. In: Int. Conf. on Conceptual Structures (ICCS 2005), Kassel, de, pp. 201–202 (July 2005)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hertzberg, J., Thiebaux, S.: Turning an Action Formalism into a Planner: a case Study. Journal of Logic and Computation 4, 617–654 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kent, R.E.: Distributed Conceptual Structures. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 104–123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lifschitz, V.: A Theory of Actions. In: Procs. of the tenth International Joint Conference on Artificial Intelligence, pp. 432–437. Morgan Kaufmann, San Francisco (1993)Google Scholar
  12. 12.
    Lind, M.: Modeling Goals and Functions of Complex Industrial Plant. Journal of Applied Artificial Intelligence 8, 259–283 (1994)CrossRefGoogle Scholar
  13. 13.
    Rao, A.S., Georgeff, M.P.: BDI Agents: from Theory to Practice. In: Procs. of the 1st Int. Conf. on Multi-agent Systems (ICMAS 1995), pp. 312–319 (1995)Google Scholar
  14. 14.
    Schätz, B.: Towards Service-based Systems Engineering: Formalizing and checking service specifications, Tech. Report TUMI-0602, München (2002)Google Scholar
  15. 15.
    Schorlemmer, M., Kalfoglou, Y.: Using information-flow theory to enable semantic interoperability. In: 6e Congres Catala en Intelligencia Artificial, Palma de Mallorca, Spain (2003)Google Scholar
  16. 16.
    Sichman, J.S., Conte, R.: Multi-Agent Dependence by Dependence Graphs. In: Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS, vol. 2631, pp. 483–490. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multi Agent Systems: The Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.LISTIC-ESIAUniversity of SavoieAnnecyFrance

Personalised recommendations