An On-Line Approach for Planning in Time-Limited Situations

  • Oscar Sapena
  • Eva Onaindía
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


In this paper we present a novel planning approach, based on well-known techniques such as goal decomposition and heuristic planning, aimed at working in highly dynamic environments with time constraints. Our contribution is a domain-independent planner to incrementally generate plans under a deliberative framework for reactive domains. The planner follows the anytime principles, i.e a first solution plan can be quickly computed and the quality of the solution is improved as time is available. Moreover, the fast computation of the sequential actions allows the plan to start its execution before it is totally generated, thus giving rise to a highly reactive planning system.


Goal State Unexpected Event Solution Plan Initial Plan Plan Execution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambite, J.L., Knoblock, C.A.: Planning by rewriting. JAIR 15, 207–261 (2001)MATHGoogle Scholar
  2. 2.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90, 281–300 (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Briggs, W., Cook, D.J.: Anytime planning for optimal tradeoff between deliberative and reactive planning. In: FLAIRS Conference, pp. 367–370 (1999)Google Scholar
  4. 4.
    Bryce, D., Kambhampati, S.: Heuristic guidance measures for conformant planning. In: Proceedings of ICAPS, pp. 365–375 (2004)Google Scholar
  5. 5.
    Chen, Y., Hsu, C.W., Wah, B.W.: SGPlan: Subgoal partitioning and resolution in planning. In: IPC-4 Booklet (ICAPS) (2004)Google Scholar
  6. 6.
    Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A.: Planning under time constraints in stochastic domains. Artificial Intelligence 76(1-2), 35–74 (1995)CrossRefGoogle Scholar
  7. 7.
    Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in LPG. JAIR 20, 239–290 (2003)MATHGoogle Scholar
  8. 8.
    Hawes, N.: Anytime planning for agent behaviour. PLANSIG, 157–166 (2001)Google Scholar
  9. 9.
    Hoffman, J., Nebel, B.: The FF planning system: Fast planning generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)Google Scholar
  10. 10.
    Knight, R., Rabideau, G., Chien, S.A., Engelhardt, B., Sherwood, R.: Casper: Space exploration through continuous planning. IEEE Intelligent Systems 16(5), 70–75 (2001)Google Scholar
  11. 11.
    Koenig, S., Furcy, D., Bauer, C.: Heuristic search-based replanning. In: International Conference on Artificial Intelligence Planning and Scheduling (AIPS), pp. 310–317 (2002)Google Scholar
  12. 12.
    Koenig, S., Tovey, C.A., Smirnov, Y.V.: Performance bounds for planning in unknown terrain. Artificial Intelligence 147(1-2), 253–279 (2003)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147(1-2), 119–162 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Pryor, L., Collins, G.: Planning for contingencies: A decision-based approach. Journal of Artificial Intelligence Research 4, 287–339 (1996)Google Scholar
  15. 15.
    Sapena, O., Onaindía, E.: Handling numeric criteria in relaxed planning graphs. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 114–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oscar Sapena
    • 1
  • Eva Onaindía
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaSpain

Personalised recommendations