An Optimal Method for Multiple Observers Sitting on Terrain Based on Improved Simulated Annealing Techniques

  • Pin Lv
  • Jin-fang Zhang
  • Min Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


The problem of multiple observers sitting on terrain (MOST) is an important part in visibility-based terrain reasoning (VBTR), but it is difficult because of the unacceptable computing time. Recent developments in this field focus on involving spatial optimization techniques, such as a heuristic algorithm. In this paper, a new method is developed based on the Improved Simulated Annealing (ISA) algorithm through the analysis of different terrain characters. A new annealing function and a new state function are designed to make the improved algorithm fit the problem better. Experiment results show that without loss of precision, use of the ISA algorithm reduces time cost 50%~70% when compared with the traditional SA.


Heuristic Algorithm Simulated Annealing Algorithm Digital Terrain Model Temperature Stage Annealing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E.H.L., Korst, J.H.M.: Simulated annealing and Boltzmann machines, p. 284. John Wiley and Sons, Chichester (1989)MATHGoogle Scholar
  2. 2.
    Anderson, H.R., McGeehan, J.P.: Optimizing Microcell Base Station. Locations Using Simulated Annearing Techniques. Proc. IEEE VTC 2, 858–862 (1994)Google Scholar
  3. 3.
    Aspbury, A.S., Gibson, R.M.: Long-Range Visibility of Greater Sage Grouse Leks: a GIS-based Analysis. Animal Behaviour 67, 1127–1132 (2004)CrossRefGoogle Scholar
  4. 4.
    Bhaskar, K., Wicker, S.B.: Experimental Analysis of Local Search Algorithms for Optimal Base Station Location. In: International Conference on Evolutionary Computing for Computer, Communication, Control and Power (ECCAP 2000), Chennai, India (2000)Google Scholar
  5. 5.
    Branko, K., Borut, Z.: Comparison of Viewshed Algorithms on Regular Spaced Points. In: International Conference on Computer Graphics and Interactive Techniques, Budmerice, Slovakia, pp. 177–183 (2002)Google Scholar
  6. 6.
    Camp, R.J., Sinton, D.T., Knight, R.L.: Viewsheds: A Complementary Management Approach to Buffer Zones. Wildlife Society Bulletin 25, 612–615 (1997)Google Scholar
  7. 7.
    De Floriani, L., Magillo, P.: Visibility Algorithms on Triangulated Digital Terrain Models. International Journal of Geographic Information Systems 8(1), 13–41 (1994)Google Scholar
  8. 8.
    De Floriani, L., Marzano, L., Puppo, P.E.: Line-of-sight Communication on Terrain Models. International Journal of Geographical Information Systems 8(4), 329–342 (1994)CrossRefGoogle Scholar
  9. 9.
    De Floriani, L., Marzano, L., Puppo, P.E.: Intervisibility on Terrains, Geographic Information System: Principles, Techniques, Management and Applications, pp. 543–556. John Wiley & Sons, Chichester (1999)Google Scholar
  10. 10.
    Franklin, W.R., Vogt, C.: Multiple ObserverSiting on Terrain with Intervisibility or Lo-Res Data. In: XXth Congress, International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, pp. 12–23 (2004)Google Scholar
  11. 11.
    Franklin, W.R., Vogt, C.: Efficient Multiple Observer Siting on Large Terrain Cells. In: GIScience 2004 Third International Conference on Geographic Information Science, University of Maryland Conference Center, USA (2004)Google Scholar
  12. 12.
    Jeroen, C.J., Gerard, B.M.: Using simulated annealing for resource allocation. Int. J. Geographical Information Science 16(6), 571–587 (2002)CrossRefGoogle Scholar
  13. 13.
    Kim, Y.H., Clarke, G.: Exploring Optimal Visibility Site Selection Using Spatial Optimisation Techniques. GIS Research UK, University of Glamorgan and University of Cardiff, Glamorgan, Wales, UK (2001)Google Scholar
  14. 14.
    Kim, Y.H., Rana, S., Wise, S.: Exploring multiple viewshed analysis using terrain features and optimisation techniques. Computers and Geosciences 30(9-10), 1019–1032 (2004)CrossRefGoogle Scholar
  15. 15.
    Kidner, D., Sparkes, A., Dorey, M.: GIS and Wind Farm Planning. In: Stillwell, J., Geertman, S., Openshaw, S. (eds.) Geographical Information and Planning, pp. 203–223. Springer, London (1999)CrossRefGoogle Scholar
  16. 16.
    Kirkpatrick, C., Gelatt, D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Laarhoven, V., Aarts, E.: Simulated Annealing: Theory and applications, p. 186. Kluwer Academic, Norwell (1987)CrossRefMATHGoogle Scholar
  18. 18.
    Metropolis, N., Rosenbluth, A., Rosenbluth, R., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  19. 19.
    Rana, S.: Fast approximation of visibility dominance using topographic features as targets and the associated uncertainty. Photogrammetric Engineering and Remote Sensing 69(8), 881–888 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sundermann, E.: PET image reconstruction using simulated annealing. In: Proceedings of the SPIE Medical Imaging Conference, Image Processing, San Diego, pp. 378–386 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pin Lv
    • 1
  • Jin-fang Zhang
    • 1
  • Min Lu
    • 1
  1. 1.National Key Laboratory of Integrated Information System Technology, Institute of Software, Chinese Academy of SciencesBeijingChina

Personalised recommendations