A Measure for Data Set Editing by Ordered Projections

  • Jesús S. Aguilar-Ruiz
  • Juan A. Nepomuceno
  • Norberto Díaz-Díaz
  • Isabel Nepomuceno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4031)


In this paper we study a measure, named weakness of an example, which allows us to establish the importance of an example to find representative patterns for the data set editing problem. Our approach consists in reducing the database size without losing information, using algorithm patterns by ordered projections. The idea is to relax the reduction factor with a new parameter, λ, removing all examples of the database whose weakness verify a condition over this λ. We study how to establish this new parameter. Our experiments have been carried out using all databases from UCI-Repository and they show that is possible a size reduction in complex databases without notoriously increase of the error rate.


Feature Selection Voronoi Diagram Continuous Attribute Decision Boundary Nominal Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar, J.S., Riquelme, J.C., Toro, M.: Data set editing by ordered projection. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin, Germany, pp. 251–255 (2000)Google Scholar
  2. 2.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learning 6, 37–66 (1991)Google Scholar
  3. 3.
    Blake, C., Merz, E.K.: UCI repository of machine learning databases (1998)Google Scholar
  4. 4.
    Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory IT-13(1), 21–27 (1967)CrossRefGoogle Scholar
  5. 5.
    Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3), 515–516 (1968)CrossRefGoogle Scholar
  6. 6.
    Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Klee, V.: On the complexity of d-dimensional voronoi diagrams. Arch. Math. 34, 75–80 (1980)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Neumann, J., Schnörr, C., Steidl, G.: SVM-based Feature Selection by Direct Objective Minimisation Pattern Recognition. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 212–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffmann, San Mateo (1993)Google Scholar
  10. 10.
    Riquelme, J.C., Aguilar-Ruiz, J.S., Toro, M.: Finding representative patterns with ordered projections. Pattern Recognition 36, 1009–1018 (2003)CrossRefGoogle Scholar
  11. 11.
    Ritter, G., WoodruI, H., Lowry, S., Isenhour, T.: An algorithm for a selective nearest neighbor decision rule. IEEE Trans. Inf. Theory 21(6), 665–669 (1975)CrossRefMATHGoogle Scholar
  12. 12.
    Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: NLC: A Measure Based on Projections 14th International Conference on Database and Expert Systems Applications. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6(6), 448–452 (1976)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognition 12(4), 261–268 (1980)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6(1), 1–34 (1997)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jesús S. Aguilar-Ruiz
    • 1
  • Juan A. Nepomuceno
    • 1
  • Norberto Díaz-Díaz
    • 1
  • Isabel Nepomuceno
    • 1
  1. 1.Bioinformatics Group of SevillePablo de Olavide University and University of SevilleSpain

Personalised recommendations