Advertisement

Geometric Conditions for the Extendability of Ternary Linear Codes

  • Tatsuya Maruta
  • Kei Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)

Abstract

We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k, 4 ≤k ≤6, with minimum distance d ≡1 or 2 (mod 3) from a geometrical point of view. We also give the necessary and sufficient conditions for the extendability of ternary linear codes with diversity (θ k − − 2,3 k − − 2), (θ k − − 2+3 k − − 3,4 Open image in new window 3 k − − 3), (θ k − − 2–3 k − − 3,5 Open image in new window 3 k − − 3) for k ≥6, where θ j = (3 j + 1–1)/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Maruta, T.: On the extendability of linear codes. Finite Fields Appl. 7, 350–354 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Maruta, T.: Extendability of linear codes over GF(q) with minimum distance d, gcd(d,q) = 1. Discrete Math. 266, 377–385 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Maruta, T.: A new extension theorem for linear codes. Finite Fields Appl. 10, 674–685 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Maruta, T.: Extendability of ternary linear codes. Des. Codes Cryptogr. 35, 175–190 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Maruta, T., Okamoto, K.: Some improvements to the extendability of ternary linear codes. Finite Fields Appl. (to appear)Google Scholar
  7. 7.
    Okamoto, K., Maruta, T.: Extendability of ternary linear codes of dimension five. In: Proc. 9th International Workshop in Algebraic and Combinatorial Coding Theory (ACCT), Kranevo, Bulgaria, pp. 312–318 (2004)Google Scholar
  8. 8.
    Simonis, J.: Adding a parity check bit. IEEE Trans. Inform. Theory 46, 1544–1545 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tatsuya Maruta
    • 1
  • Kei Okamoto
    • 1
  1. 1.Department of Mathematics and Information SciencesOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations