A Welch–Berlekamp Like Algorithm for Decoding Gabidulin Codes

  • Pierre Loidreau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


In this paper, we present a new approach of the decoding of Gabidulin codes. We show that, in the same way as decoding Reed-Solomon codes is an instance of the problem called polynomial reconstruction, the decoding of Gabidulin codes can be seen as an instance of the problem of reconstruction of linearized polynomials. This approach leads to the design of two efficient decoding algorithms inspired from the Welch–Berlekamp decoding algorithm for Reed–Solomon codes. The first algorithm has the same complexity as the existing ones, that is cubic in the number of errors, whereas the second has quadratic complexity in 2.5n 2 – 1.5k 2.


Decode Algorithm Rank Distance Solomon Code Quadratic Complexity Decode Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berlekamp, E.R., Welch, L.: Error correction of algebraic block codes. US Patent, Number 4,633,470 (1986)Google Scholar
  2. 2.
    Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Information Transmission 21, 1–12 (1985)MathSciNetMATHGoogle Scholar
  4. 4.
    Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Loidreau, P.: Sur la reconstruction des polynômes linéaires: un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences: Série I 339(10), 745–750 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ore, Ø.: On a special class of polynomials. Transactions of the American Mathematical Society 35, 559–584 (1933)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ore, Ø.: Contribution to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274 (1934)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ourivski, A., Johannson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: 5th Int. ITG Conference on Source and Channel Coding (SCC 2004) (2004)Google Scholar
  11. 11.
    Roth, R.M.: Maximum-Rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Sudan, M.: Decoding Reed-Solomon codes beyond the error-correction diameter. In: Proceedings of the 35th Annual Allerton Conference on Communication, Control and Computing, pp. 215–224 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pierre Loidreau
    • 1
  1. 1.Ecole Nationale Supérieure de Techniques AvancéesFrance

Personalised recommendations