One and Two-Variable Interlace Polynomials: A Spectral Interpretation

  • Constanza Riera
  • Matthew G. Parker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


We relate the one- and two-variable interlace polynomials of a graph to the spectra of a quadratic boolean function with respect to a strategic subset of local unitary transforms. By so doing we establish links between graph theory, cryptography, coding theory, and quantum entanglement. We establish the form of the interlace polynomial for certain functions, provide new one and two-variable interlace polynomials, and propose a generalisation of the interlace polynomial to hypergraphs. We also prove conjectures from [15] and equate certain spectral metrics with various evaluations of the interlace polynomial.


Boolean Function Adjacency Matrix Complete Graph Quantum Entanglement Power Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M., van der Holst, H.: Interlace Polynomials. Linear Algebra and its Applications 377, 11–30 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arratia, R., Bollobas, B., Sorkin, G.B.: The Interlace Polynomial: a new graph polynomial. In: Proc. 11th Annual ACM-SIAM Symp. on Discrete Math., pp. 237–245 (2000)Google Scholar
  3. 3.
    Arratia, R., Bollobas, B., Sorkin, G.B.: The Interlace Polynomial of a Graph. J. Combin. Theory Ser. B 92(2), 199–233 (2004), (v2 August 13, 2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arratia, R., Bollobas, B., Sorkin, G.B.: Two-Variable Interlace Polynomial. Combinatorica 24(4), 567–584 (2004), (v3 August 13, 2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balister, P.N., Bollobas, B., Cutler, J., Pebody, L.: The Interlace Polynomial of Graphs at − 1. Europ. J. Combinatorics 23, 761–767 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouchet, A.: Tutte-Martin Polynomials and Orienting Vectors of Isotropic Systems. Graphs Combin. 7, 235–252 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum Error Correction Via Codes Over GF(4). IEEE Trans. on Inform. Theory 44, 1369–1387 (1998), MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Danielsen, L.E.: On Self-Dual Quantum Codes, Graphs, and Boolean Functions. Master’s Thesis, Selmer Centre, Inst. for Informatics, University of Bergen, Bergen, Norway (March 2005),
  9. 9.
    Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic Propagation Criteria for Boolean Functions. Inform. Comput. (accepted, 2005),
  10. 10.
    Danielsen, L.E., Parker, M.G.: Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I,H,N}n Transform. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 373–388. Springer, Heidelberg (2005), CrossRefGoogle Scholar
  11. 11.
    Glynn, D.G.: On Self-Dual Quantum Codes and Graphs. Electronic Journal of Combinatorics (April 2002) (submitted),
  12. 12.
    Gulliver, T.A., Parker, M.G.: The Multivariate Merit Factor of a Boolean Function. In: IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, Rotorua, New Zealand, August 29 - September 1 (2005),
  13. 13.
    Hein, M., Eisert, J., Briegel, H.J.: Multi-Party Entanglement in Graph States. Phys. Rev. A 69(6) (2004),
  14. 14.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  15. 15.
    Parker, M.G.: Constabent Properties of Golay-Davis-Jedwab Sequences. In: ISIT2000, Sorrento, Italy (June 2000),
  16. 16.
    Parker, M.G.: Generalised S-Box Nonlinearity. NESSIE Public Document - NES/DOC/UIB/WP5/020/A, February 11 (2003),
  17. 17.
    Parker, M.G.: Univariate and Multivariate Merit Factors. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 72–100. Springer, Heidelberg (2005), CrossRefGoogle Scholar
  18. 18.
    Parker, M.G., Rijmen, V.: The Quantum Entanglement of Binary and Bipolar Sequences. In: Sequences and Their Applications. Discrete Mathematics and Theoretical Computer Science Series. Springer, Heidelberg (2001),, Google Scholar
  19. 19.
    M. G. Parker and C. Tellambura, ”A Construction for Binary Sequence Sets with Low Peak-to-Average Power Ratio”, Technical Report No 242, Dept. of Informatics, University of Bergen, Norway, publikasjoner/texrap/ps/, Feb. 2003.
  20. 20.
    Riera, C., Parker, M.G.: Generalised Bent Criteria for Boolean Functions. IEEE Trans Inform. Theory (July 2005) (accepted),
  21. 21.
    Riera, C., Petrides, G., Parker, M.G.: Generalised Bent Criteria for Boolean Functions (II),
  22. 22.
    Riera, C., Parker, M.G.: On Pivot Orbits of Boolean Functions. In: Proceedings of the Fourth International Workshop on Optimal Codes and Related Topics (OC 2005), Pamporovo, Bulgaria (June 2005),
  23. 23.
    Rothaus, O.S.: On Bent Functions. J. Comb. Theory 20A, 300–305 (1976)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wei, T., Ericsson, M., Goldbart, P.M., Munro, W.J.: Connections between relative entropy of entanglement and geometric measure of entanglement. Quantum Information and Computation 4, 252–272 (2004), MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wei, T., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Physical Review A 68 (2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Constanza Riera
    • 1
  • Matthew G. Parker
    • 2
  1. 1.Depto. de Álgebra, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.Selmer Centre, Inst. for Informatikk, Høyteknologisenteret i BergenUniversity of BergenBergenNorway

Personalised recommendations