Frequency/Time Hopping Sequences with Large Linear Complexities

  • Yun-Pyo Hong
  • Hong-Yeop Song
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


In this paper, we discuss some methods of constructing frequency/time hopping (FH/TH) sequences over GF(p k ) by taking successive k-tuples of given sequences over GF(p). We are able to characterize those p-ary sequences whose k-tuple versions now over GF(p k ) have the maximum possible linear complexities (LCs). Next, we consider the FH/TH sequence generators composed of a combinatorial function generator and some buffers. We are able to characterize the generators whose output FH/TH sequences over GF(p k ) have the maximum possible LC for the given algebraic normal form.


Binary Sequence Linear Complexity Minimal Polynomial Hardware Complexity Linear Feedback Shift Register 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golomb, S.W.: Shift Register Sequences, Revised edn. Aegean Park Press, Laguna Hills (1982)Google Scholar
  2. 2.
    Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook, Revised edn. McGraw-Hill, Inc., New York (1994)Google Scholar
  3. 3.
    Massey, J.L.: Shift-Register Synthesis and BCH decoding. IEEE Transactions on Information Theory IT-15(1), 122–127 (1969)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  5. 5.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)CrossRefMATHGoogle Scholar
  6. 6.
    Chan, A.H., Games, R.A., Key, E.L.: On the Complexities of de Bruijn Sequences. Journal of Combinatorial Theory, Series A 33, 233–246 (1982)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation for Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Park, W.J., Komo, J.J.: Relationships Between m-Sequences over GF(q) and GF(q m). IEEE Transactions on Information Theory 35(1), 183–186 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gong, G., Xiao, G.Z.: Synthesis and Uniqueness of m-Sequences over GF(q n) as n-Phase Sequences over GF(q). IEEE Transactions on Communications 42(8), 2501–2505 (1994)CrossRefGoogle Scholar
  10. 10.
    Meidl, W.: Discrete Fourier Transform, Joint Linear Complexity and Generalized Joint Linear Complexity of Multisequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 101–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Siegenthaler, T.: Correlation-Immunity of Nonlinear Combining Functions for Cryptographic Applications. IEEE Transactions on Information Theory IT-30(5), 776–780 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Meier, W., Staffelbach, O.: Nonlinearity Criteria for Cryptographic Functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yun-Pyo Hong
    • 1
    • 2
  • Hong-Yeop Song
    • 1
    • 2
  1. 1.Coding and Information Theory Lab.CITY – Center for Information Technology of Yonsei UniversityKorea
  2. 2.Department of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations