Error and Erasure Correction of Interleaved Reed–Solomon Codes

  • Georg Schmidt
  • Vladimir R. Sidorenko
  • Martin Bossert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


We present an algorithm for error and erasure correction of interleaved Reed–Solomon codes. Our algorithm is based on an algorithm recently proposed by Bleichenbacher et al. This algorithm is able to correct many error patterns beyond half the minimum distance of the interleaved Reed–Solomon code. We extend the algorithm in a way, that it is not only able to correct errors, but can correct both, errors and erasures simultaneously. Furthermore we present techniques to describe the algorithm in an efficient way. This can help to reduce the complexity when implementing the algorithm.


Linear System Error Pattern Vandermonde Matrix Solomon Code Probabilistic Decode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bleichenbacher, D., Kiayias, A., Young, M.: Decoding of interleaved Reed Solomon codes over noisy data. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 97–108. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Justesen, J., Thommesen, C., Høholdt, T.: Decoding of concatenated codes with interleaved outer codes. In: Proc. of IEEE Intern. Symposium on Inf. Theory, Chicago, USA, p. 329 (2004)Google Scholar
  3. 3.
    Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes. U. S. Patent 4 633 470, issued December 30 (1986)Google Scholar
  4. 4.
    Althaus, H.L., Leake, R.J.: Inverse of a finite-field Vandermonde matrix. IEEE Trans. Inform. Theory 15, 173 (1969)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Klinger, A.: The Vandermonde matrix. Amer. Math. Monthly 74, 571–574 (1967)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brown, A., Minder, L., Shokrollahi, A.: Probabilistic decoding of interleaved rs-codes on the q-ary symmetric channel. In: Proc. of IEEE Intern. Symposium on Inf. Theory, Chicago, USA, p. 327 (2004)Google Scholar
  7. 7.
    Schmidt, G., Sidorenko, V.R., Bossert, M.: Interleaved Reed–Solomon codes in concatenated code designs. In: Proc. of IEEE ISOC ITW2005 on Coding and Complexity, Rotorua, New Zealand, pp. 187–191 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georg Schmidt
    • 1
  • Vladimir R. Sidorenko
    • 1
  • Martin Bossert
    • 1
  1. 1.Department Telecommunications, and Applied Information TheoryUniversity of UlmGermany

Personalised recommendations