Advertisement

Linear Filtering of Nonlinear Shift-Register Sequences

  • Berndt M. Gammel
  • Rainer Göttfert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)

Abstract

Nonlinear n-stage feedback shift-register sequences over the finite field \(\mathbb{F}_q\) of period q n –1 are investigated under linear operations on sequences. We prove that all members of an easily described class of linear combinations of shifted versions of these sequences possess useful properties for cryptographic applications: large periods, large linear complexities and good distribution properties. They typically also have good maximum order complexity values as has been observed experimentally. A running key generator is introduced based on certain nonlinear feedback shift registers with modifiable linear feedforward output functions.

Keywords

Linear Complexity Stream Cipher Periodic Sequence Irreducible Polynomial Linear Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Steven 28, 203–217 (1951)MathSciNetMATHGoogle Scholar
  2. 2.
    Zong-Duo, D., Jun-Hui, Y.: Linear complexity of periodically repeated random sequences. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 168–175. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Fúster-Sabater, A., Caballero-Gil, P.: On the linear complexity on nonlinearly filtered PN-sequences. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 80–90. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Gammel, B.M., Göttfert, R., Kniffler, O.: Status of Achterbahn and tweaks. In: SASC 2006—Stream Ciphers Revisited, Leuven, Belgium, February 2-3, 2006. Workshop Record, pp. 302–315 (2006)Google Scholar
  5. 5.
    Gammel, B.M., Göttfert, R., Kniffler, O.: An NLFSR-based stream cipher. In: IEEE International Symposium on Circuits and Systems — ISCAS 2006, Island of Kos, Greece, May 21-24 (2006)Google Scholar
  6. 6.
    Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)MATHGoogle Scholar
  7. 7.
    Groth, E.J.: Generation of binary sequences with controllable complexity. IEEE Trans. Inform. Theory IT-17, 288–296 (1971)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jansen, C.J.A.: Investigations On Nonlinear Streamcipher Systems: Construction and Evaluation Methods, Ph.D. Thesis, Technical University of Delft, Delft (1989)Google Scholar
  9. 9.
    Key, E.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inform. Theory IT-22, 732–736 (1976)CrossRefMATHGoogle Scholar
  10. 10.
    Laksov, D.: Linear recurring sequences over finite fields. Math. Scand. 16, 181–196 (1965)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lam, C.C.Y., Gong, G.: A lower bound for the linear span of filtering sequences. In: A lower bound for the linear span of filtering sequences, Workshop Record of The State of the Art of Stream Ciphers, Brugge, October 2004, pp. 220–233 (2004)Google Scholar
  12. 12.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Addison-Wesley, Reading (1983) (Now Cambridge Univ. Press.)MATHGoogle Scholar
  13. 13.
    Massey, J.L., Serconek, S.: A Fourier Transform Approach to the Linear Complexity of Nonlinearly Filtered Sequences. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 332–340. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mykkeltveit, J.: Nonlinear recurrences and arithmetic codes. Information and Control 33, 193–209 (1977)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mykkeltveit, J., Siu, M.-K., Tong, P.: On the cycle structure of some nonlinear shift register sequences. Information and Control 43, 202–215 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Niederreiter, H.: Cryptology—The mathematical theory of data security. In: Mitsui, T., Nagasaka, K., Kano, T. (eds.) Prospects of Mathematical Science, pp. 189–209. World Sci. Pub., Singapore (1988)Google Scholar
  18. 18.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NFS Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)CrossRefMATHGoogle Scholar
  19. 19.
    Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 37–51. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  20. 20.
    Paterson, K.G.: Root counting, the DFT and the linear complexity of nonlinear filtering. Designs, Codes and Cryptography 14, 247–259 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)CrossRefMATHGoogle Scholar
  22. 22.
    Selmer, E.S.: Linear Recurrence Relations over Finite Fields. Univ. of Bergen (1966)Google Scholar
  23. 23.
    Siegenthaler, T., Kleiner, A.W., Forré, R.: Generation of binary sequences with controllable complexity and ideal r-tuple distribution. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 15–23. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  24. 24.
    Willett, M.: The minimum polynomial for a given solution of a linear recursion. Duke Math. J. 39, 101–104 (1972)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Berndt M. Gammel
    • 1
  • Rainer Göttfert
    • 1
  1. 1.Infineon Technologies AGMunichGermany

Personalised recommendations