Advertisement

A New Public-Key Cryptosystem Based on the Problem of Reconstructing p–Polynomials

  • Cédric Faure
  • Pierre Loidreau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)

Abstract

In this paper we present a new public key cryptosystem whose security relies on the intractability of the problem of reconstructing p–polynomials. This is a cryptosystem inspired from the Augot–Finiasz cryptosystem published at Eurocrypt 2003. Though this system was broken by Coron, we show However, in our case, we show how these attacks can be avoided, thanks to properties of rank metric and p–polynomials. Therefore, public-keys of relatively small size can be proposed (less than 4000 bits).

Keywords

Trace Operator Reconstruction Problem Algebraic Attack Rank Distance Solomon Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augot, D., Finiasz, M.: A public key encryption scheme bases on the polynomial reconstruction problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 222–233. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Augot, D., Finiasz, M., Loidreau, P.: Using the trace operator to repair the polynomial reconstruction based cryptosystem presented at eurocrypt 2003, Cryptology ePrint Archive, Report 2003/209 (2003), http://eprint.iacr.org/
  3. 3.
    Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S.: Cryptanalysis of a public-key encryption scheme based on the polynomial reconstruction problem. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 14–28. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Faure, C.: Etude d’un systéme de chiffrement á clé publique fondé sur le probléme de reconstruction de polynômes linéaires. Master’s thesis, Université Paris 7 (2004)Google Scholar
  6. 6.
    Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Information Transmission 21, 1–12 (1985)MathSciNetMATHGoogle Scholar
  7. 7.
    Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes. In: Lobstein, A., Litsyn, S.N., Zémor, G., Cohen, G. (eds.) Algebraic Coding 1991. LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  8. 8.
    Kiayias, A., Yung, M.: Cryptanalyzing the polynomial-reconstruction based public-key system under optimal parameter choice. Cryptology ePrint Archive, Report, 2004/217 (2004), http://eprint.iacr.org/
  9. 9.
    Loidreau, P.: Sur la reconstruction des polynômes linéaires: un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus de l’Académie des Sciences: Série I 339(10), 745–750 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Øre, Ö.: On a special class of polynomials. Transactions of the American Mathematical Society 35, 559–584 (1933)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Øre, Ö.: Contribution to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274 (1934)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ourivski, A., Johannson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: 5th Int. ITG Conference on Source and Channel Coding (SCC 2004) (2004)Google Scholar
  14. 14.
    Roth, R.M.: Maximum-Rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cédric Faure
    • 1
  • Pierre Loidreau
    • 1
  1. 1.Ecole Nationale Supérieure de Techniques AvancéesFrance

Personalised recommendations