Advertisement

Dimension of the Linearization Equations of the Matsumoto-Imai Cryptosystems

  • Adama Diene
  • Jintai Ding
  • Jason E. Gower
  • Timothy J. Hodges
  • Zhijun Yin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)

Abstract

The Matsumoto-Imai (MI) cryptosystem was the first multivariate public key cryptosystem proposed for practical use. Though MI is now considered insecure due to Patarin’s linearization attack, the core idea of MI has been used to construct many variants such as Sflash, which has recently been accepted for use in the New European Schemes for Signatures, Integrity, and Encryption project. Linearization attacks take advantage of the algebraic structure of MI to produce a set of equations that can be used to recover the plaintext from a given ciphertext. In our paper, we present a solution to the problem of finding the dimension of the space of linearization equations, a measure of how much work the attack will require.

Keywords

Linearization Equation Label Vertex Algebraic Attack Spacing Option Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A Fast and Secure Implementation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a Fast Multivariate Signature Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ding, J., Gower, J.E.: Innoculating Multivariate Schemes against Differential Attacks, in Cryptology ePrint archive, report 2005/255 (2005), http://eprint.iacr.org/
  5. 5.
    Jacobson, N.: Lectures in Abstract Algebra III. Springer, Heidelberg (1964)CrossRefMATHGoogle Scholar
  6. 6.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Lang, S.: Algebra. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  9. 9.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adama Diene
    • 1
  • Jintai Ding
    • 1
  • Jason E. Gower
    • 1
  • Timothy J. Hodges
    • 1
  • Zhijun Yin
    • 1
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations