Reduction of Conjugacy Problem in Braid Groups, Using Two Garside Structures

  • Maffre Samuel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


We study the Conjugacy Search Problem used in braid-based cryptography. We develop an algorithm running in Garside groups generalizing braid groups. The method permits, in some case, to reduce drastically the size of the secret in braid groups. We use the fact that braid groups admit two different Garside structures to improve the efficiency of the reduction. This paper emphasizes the importance of the particular way used to produce Conjugacy Search Problem instances. The chosen method influences directly the reduction and then also the security.


Braid Group Random Generator Conjugacy Problem Artin Group Canonical Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 287–291 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Artin, E.: Theory of braids. Annals of Math 48, 101–126 (1947)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Birman, J.S., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the braid groups. Advances in Math. 139(2), 322–353 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cha, J.C., Ko, K.H., Lee, S.-J., Han, J.W., Cheon, J.H.: An efficient implementation of braid groups. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 144–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Dehornoy, P., Paris, L.: Garside groups, a generalization of Artin groups. Proc. London Math. Soc. 79(3), 569–604 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dehornoy, P.: Braid-based cryptography. Contemp. Math., Amer. Math. Soc., 360 (2004)Google Scholar
  7. 7.
    Franco, N., Gonzalez-Meneses, J.: Conjugacy problem for braid groups and Garside groups. Journal of Algebra 266(1), 112–132 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garside, F.A.: The braid group and other groups, Quart. J. Math. Oxford 20-78, 235–254 (1969)Google Scholar
  9. 9.
    Hofheinz, D., Steinwandt, R.: A practical attack on some braid group cryptographic primitives. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 187–198. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Ko, K.H., Choi, D.H., Cho, M.S., Lee, J.W.: New Signature Scheme Using Conjugacy Problem (November 2002),
  11. 11.
    Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.S., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Maffre, S.: A weak key test for braid-based cryptography. Designs, Codes and Cryptography (to appear)Google Scholar
  13. 13.
    Maffre, S.: Conjugaison et Cyclage dans les groupes de Garside, applications cryptographiques, Ph.D. Lab. LACO (2005)Google Scholar
  14. 14.
    Picantin, M.: The conjugacy problem in small Gaussian groups. Communications in Algebra 29(3), 1021–1039 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Sibert, H.: Algorithmique des groupes de tresses, Ph.D. Lab. LMNO (2003)Google Scholar
  16. 16.
    Sibert, H., Dehornoy, P., Girault, M.: Entity authentification schemes using braid word reduction. In: WCC 2003, pp. 153–163 (2003)Google Scholar
  17. 17.
    The Magma Computational Algebra System for Algebra, Number theory and Geometry,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maffre Samuel
    • 1
  1. 1.XLIMUniversity of LimogesFrance

Personalised recommendations