Extending Gibson’s Attacks on the GPT Cryptosystem

  • Raphael Overbeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)


In this paper we look at the Gabidulin version of the McEliece cryptosystem (GPT). In order to avoid Gibson’s attacks on GPT, several variants have been proposed. We cryptanalyze the variant with column scrambler and the one using reducible rank codes. Employing Gibson’s attacks as a black box, we get an efficient attack for the parameter sets proposed for GPT with column scrambler. As a countermeasure to our attack, we propose a new variant of the GPT cryptosystem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, T.P., Loidreau, P.: Security of the Niederreiter form of the GPT public-key cryptosystem. In: IEEE International Symposium on Information Theory, Lausanne, Suisse, July 2002. IEEE, Los Alamitos (2002)Google Scholar
  2. 2.
    Gabidulin, E.M., Ourivski, A.V.: Column scrambler for the GPT cryptosystem. Discrete Applied Mathematics 128(1), 207–221 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Problems of Information Transmission 21(1) (1985)Google Scholar
  4. 4.
    Gabidulin, E.M.: On public-key cryptosystems based on linear codes. In: Proc. of 4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers. IMA Press (1995)Google Scholar
  5. 5.
    Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes and their applications to cryptography. IEEE Transactions on Information Theory 49(12), 3289–3293 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public key cryptosystem. J-Designs-Codes-Cryptogr 6(1), 37–45 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gibson, J.K.: The security of the gabidulin public key cryptosystem. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Johansson, T., Ourivski, A.V.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raphael Overbeck
    • 1
  1. 1.Department of Computer Science, Cryptography and Computer Algebra GroupGK Electronic Commerce, TU-DarmstadtGermany

Personalised recommendations