Advertisement

Interpolation of Functions Related to the Integer Factoring Problem

  • Clemens Adelmann
  • Arne Winterhof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3969)

Abstract

The security of the RSA public key cryptosystem depends on the intractability of the integer factoring problem. This paper shall give some theoretical support to the assumption of hardness of this number theoretic problem.

We obtain lower bounds on degree, weight, and additive complexity of polynomials interpolating functions related to the integer factoring problem, including Euler’s totient function, the divisor sum functions, Carmichael’s function, and the RSA-function.

These investigations are motivated by earlier results of the same flavour on the interpolation of discrete logarithm and Diffie-Hellman mapping.

Keywords

polynomials degree weight additive complexity factoring problem RSA-problem Euler’s totient function divisor sum function Carmichael’s function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, E.: Discrete logarithms and factoring, Report No. UCB/CSD-84-186, Computer Science Division (EECS), University of California, Berkeley, California (1984)Google Scholar
  2. 2.
    Brandstätter, N., Lange, T., Winterhof, A.: On the Non-linearity and Sparsity of Boolean Functions Related to the Discrete Logarithm in Finite Fields of Characteristic Two. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 135–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Brandstätter, N., Winterhof, A.: Approximation of the discrete logarithm in finite fields of even characteristic by real polynomials. Arch. Math. (Brno) (to appear)Google Scholar
  4. 4.
    Brandstätter, N., Winterhof, A.: Some notes on the two-prime generator. IEEE Trans. Inform. Theory 51, 3654–3657 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46, 203–213 (1999)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J. Cryptology 13, 339–360 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ding, C.: Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields Appl. 3, 159–174 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ding, C., Helleseth, T.: On cyclotomic generator of order r. Inform. Process. Lett. 66, 21–25 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  12. 12.
    Griffin, F., Shparlinski, I.: On the linear complexity profile of the power generator. IEEE Trans. Inform. Theory 46, 2159–2162 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. Comput. 17, 336–341 (1988)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kiltz, E., Winterhof, A.: Lower bounds on weight and degree of bivariate polynomials related to the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 69, 305–315 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kiltz, E., Winterhof, A.: Polynomial interpolation of cryptographic functions related to Diffie-Hellman and discrete logarithm problem. Discrete Appl. Math. 154, 326–336 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Konyagin, S., Lange, T., Shparlinski, I.: Linear complexity of the discrete logarithm. Des. Codes Cryptogr. 28, 135–146 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lange, T., Winterhof, A.: Polynomial interpolation of the elliptic curve and XTR discrete logarithm. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 137–143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Lange, T., Winterhof, A.: Incomplete character sums over finite fields and their application to the interpolation of the discrete logarithm by Boolean functions. Acta Arith. 101, 223–229 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lange, T., Winterhof, A.: Interpolation of the discrete logarithm in \( F\sb q\) by Boolean functions and by polynomials in several variables modulo a divisor of q − 1. In: International Workshop on Coding and Cryptography (WCC 2001) (Paris) Discrete Appl. Math. 128, 193–206 (2003) Google Scholar
  20. 20.
    Lange, T., Winterhof, A.: Interpolation of the elliptic curve Diffie-Hellman mapping. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 51–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    El Mahassni, E., Shparlinski, I.: Polynomial representations of the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 63, 467–473 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meidl, W., Winterhof, A.: Lower bounds on the linear complexity of the discrete logarithm in finite fields. IEEE Trans. Inform. Theory 47, 2807–2811 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Meidl, W., Winterhof, A.: A polynomial representation of the Diffie-Hellman mapping. Appl. Algebra Engrg. Comm. Comput. 13, 313–318 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meletiou, G.C.: Explicit form for the discrete logarithm over the field GF(p,k). Arch. Math. (Brno) 29, 25–28 (1993)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Meletiou, G.C.: Explicit form for the discrete logarithm over the field GF(p,k). Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz. 41(45), 1–4 (1995)MathSciNetGoogle Scholar
  26. 26.
    Meletiou, G., Mullen, G.L.: A note on discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 3, 75–78 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. With a foreword by Ronald L. Rivest. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton (1997)Google Scholar
  28. 28.
    Müller, W.B., Nöbauer, W.: Some remarks on public-key cryptosystems. Studia Sci. Math. Hungar. 16, 71–76 (1981)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Müller, W.B., Nöbauer, R.: Cryptanalysis of the dickson-scheme. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 50–61. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  30. 30.
    Mullen, G.L., White, D.: A polynomial representation for logarithms in GF(q). Acta Arith. 47, 255–261 (1986)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Niederreiter, H.: A short proof for explicit formulas for discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 1, 55–57 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Niederreiter, H., Winterhof, A.: Incomplete character sums and polynomial interpolation of the discrete logarithm. Finite Fields Appl. 8, 184–192 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Risler, J.-J.: Hovansky’s theorem and complexity theory. Ordered fields and real algebraic geometry (Boulder, Colo. 1983). Rocky Mountain J. Math. 14, 851–853 (1984)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Risler, J.-J.: Additive complexity and zeros of real polynomials. SIAM J. Comput. 14, 178–183 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rojas, J.M.: Additive complexity and roots of polynomials over number fields and \(\mathfrak{p}\)-adic fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 506–516. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  36. 36.
    Rojas, J.M.: Arithmetic multivariate Descartes’ rule. Amer. J. Math. 126, 1–30 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Satoh, T.: On degrees of polynomial interpolations related to elliptic curve cryptography (Extended abstract). In: Workshop on Coding and Cryptography (WCC), pp. 55–61 (2005)Google Scholar
  38. 38.
    Shparlinski, I.: Number theoretic methods in cryptography. Complexity lower bounds, Progress in Computer Science and Applied Logic, 17, Birkhäuser, Basel (1999)Google Scholar
  39. 39.
    Shparlinski, I.: On the linear complexity of the power generator. Des. Codes Cryptogr. 23, 5–10 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Shparlinski, I.: Cryptographic applications of analytic number theory. Complexity lower bounds and pseudorandomness, Progress in Computer Science and Applied Logic, 22, Birkhäuser, Basel (2003)Google Scholar
  41. 41.
    Smith, P., Lennon, M.: LUC: a new public key system. In: Proceedings of the Ninth IFIP Int. Symp. on Computer Security, pp. 103–117. North Holland, Amsterdam (1993)Google Scholar
  42. 42.
    Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inform. Theory 36, 553–558 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Winterhof, A.: A note on the interpolation of the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 64, 475–477 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Winterhof, A.: Polynomial interpolation of the discrete logarithm. Des. Codes Cryptogr. 25, 63–72 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Winterhof, A.: A note on the linear complexity profile of the discrete logarithm in finite fields. Progress Comp. Sci. Appl. Logic 23, 359–367 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Clemens Adelmann
    • 1
  • Arne Winterhof
    • 2
  1. 1.Institut für Analysis und AlgebraTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Johann Radon Institute for Computational and Applied MathematicsLinzAustria

Personalised recommendations