Advertisement

Languages in Membrane Computing: Some Details for Spiking Neural P Systems

  • Gheorghe Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)

Abstract

After a brief introduction to membrane computing, pointing out the more important intersections with formal language theory, we survey a series of recent results related to spiking neural P systems used as devices for handling languages. Several open problems are formulated.

Keywords

Regular Language Register Machine Membrane Computing Formal Language Theory Enumerable Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational power of symport/antiport: history, advances and open problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing. Mathematical, Computer Science, and Molecular Computing Points of View. LNCS, vol. 2235. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. In: Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla (2006)Google Scholar
  4. 4.
    Chen, H., Ionescu, M., Păun, A., Păun, G., Popa, B.: On trace languages generated by spiking neural P systems. In: Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla (2006)Google Scholar
  5. 5.
    Chen, H., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with extended rules. In: Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla (2006)Google Scholar
  6. 6.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (2006)Google Scholar
  7. 7.
    Csuhaj-Varju, E.: P automata. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Fernau, H., Reinhardt, K., Freund, R., Oswald, M.: Refining the nonterminal complexity of graph-controlled, programmed and matrix grammars. J. Automata, Languages, and Combinatorics (to appear)Google Scholar
  9. 9.
    Freund, R., Ibarra, O.H., Păun, G., Yen, H.-C.: Matrix languages, register machines, vector addition systems. In: Proc. Third Brainstorming Week on Membrane Computing, Sevilla, RGNC Report 01/2005, pp. 155–168 (2005)Google Scholar
  10. 10.
    Freund, R., Kari, L., Oswald, M., Sosik, P.: Computationally universal P systems without priorities: Two catalysts are sufficient. Theoretical Computer Science 330(2), 251–266 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frisco, P.: P systems, Petri nets and program machines. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 209–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Ibarra, O.H., Păun, A., Păun, G., Rodríguez-Patón, A., Sosik, P., Woodworth, S.: Normal forms for spiking neural P systems. In: Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla (2006)Google Scholar
  13. 13.
    Ibarra, O.H., Păun, G.: Characterizations of context-sensitive languages and other language classes in terms of symport/antiport P systems. Theoretical Computer Sci. (in press, 2006)Google Scholar
  14. 14.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71 (2006)Google Scholar
  15. 15.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    Păun, A., Păun, G.: Small universal spiking neural P systems. In: Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla (2006)Google Scholar
  18. 18.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000), Turku Center for Computer Science-TUCS Report, No 208 (1998), www.tucs.fi
  19. 19.
    Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  20. 20.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. Intern. J. Found. Computer Sci. (to appear) (also available at [23])Google Scholar
  21. 21.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Infinite spike trains in spiking neural P systems (submitted, 2006)Google Scholar
  22. 22.
    Păun, G., Rozenberg, G., Salomaa, A.: Membrane computing with an external output. Fundamenta Informaticae 41(3), 313–340 (2000)MATHMathSciNetGoogle Scholar
  23. 23.
    The P Systems Web Page: http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gheorghe Păun
    • 1
    • 2
  1. 1.Institute of Mathematics of the Romanian AcademyBucharestRomania
  2. 2.Department of Computer Science and AIUniversity of SevillaSevillaSpain

Personalised recommendations