Advertisement

The Growth Ratio of Synchronous Rational Relations Is Unique

  • Olivier Carton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)

Abstract

We introduce α-synchronous relations for a rational number α. We show that if a rational relation is both α- and α′-synchronous for two different numbers α and α′, then it is recognizable. We give a synchronization algorithm for α-synchronous transducers. We also prove the closure under boolean operations and composition of α-synchronous relations.

Keywords

Rational Number Rational Relation Closure Property Output Label Growth Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003)Google Scholar
  2. 2.
    Cobham, A.: On the base-dependance of sets of numbers recognizable by finite automata. Math. Systems Theor. 3, 186–192 (1969)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM Journal Res. and Dev. 9, 47–68 (1965)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New York (1972)Google Scholar
  5. 5.
    Frougny, C., Sakarovitch, J.: Synchronized relations of finite words. Theoret. Comput. Sci. 108, 45–82 (1993)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Marcus, B.: Factors and extensions of full shifts. Monats. Math. 88, 239–247 (1979)CrossRefMATHGoogle Scholar
  7. 7.
    Adler, R.L., Coppersmith, D., Hassner, M.: Algorithms for sliding block codes. IEEE Trans. Inform. Theory IT-29, 5–22 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Khoussainov, B., Rubin, S.: Automatic structures: Overview and future directions. Journal of Automata, Languages and Combinatorics 8(2), 287–301 (2003)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Carton
    • 1
  1. 1.LIAFAUniversité Paris 7 & CNRSParis

Personalised recommendations