Can Abstract State Machines Be Useful in Language Theory?

  • Yuri Gurevich
  • Charles Wallace
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4036)


Abstract state machines (originally called evolving algebras) constitute a modern computation model [8]. ASMs describe algorithms without compromising the abstraction level. ASMs and ASM based tools have been used in academia and industry to give precise semantics for computing artifacts and to specify software and hardware [1, 2, 6]. In connection to the conference on Developments in Language Theory, we consider how and whether ASMs could be useful in language theory.


Turing Machine Abstraction Level Language Theory Splitting Process Abstract State Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abstract State Machines,
  2. 2.
    Abstract State Machine Language (AsmL),
  3. 3.
    Blass, A., Gurevich, Y.: Algorithms: A Quest for Absolute Definitions. Bulletin of the European Association for Theoretical Computer Science 81, 195–225 (2003)MATHMathSciNetGoogle Scholar
  4. 4.
    Blass, A., Gurevich, Y., Shelah, S.: Choiceless Polynomial Time. Annals of Pure and Applied Logic 100, 141–187 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blass, A., Gurevich, Y., Shelah, S.: On Polynomial Time Computation Over Unordered Structures. Journal of Symbolic Logic 67(3), 1093–1125 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Börger, E.: Abstract State Machines: A Unifying View of Models of Computation and of System Design Frameworks. Annals of Pure and Applied Logic 133, 149–171 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grädel, E., Nowack, A.: Quantum Computing and Abstract State Machines. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 309–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)Google Scholar
  9. 9.
    Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms. ACM Transactions on Computational Logic 1(1), 77–111 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gurevich, Y., Rossman, B., Schulte, W.: Semantic Essence of AsmL. Theoretical Computer Science 343(3), 370–412 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gurevich, Y.: Interactive Algorithms 2005. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 26–38. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9, 541–544 (1958)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1 - Foundations. World Scientific, Singapore (1997)Google Scholar
  14. 14.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of London Mathematical Society, series 2, 42, pp. 230–265 (1936-1937), Correction, ibidem, 43, 544–546Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuri Gurevich
    • 1
  • Charles Wallace
    • 2
  1. 1.Microsoft ResearchRedmondUSA
  2. 2.Michigan Technological UniversityHoughtonUSA

Personalised recommendations