Advertisement

Implementation Relations for Stochastic Finite State Machines

  • Mercedes G. Merayo
  • Manuel Núñez
  • Ismael Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4054)

Abstract

We present a timed extension of the classical finite state machines model where time is introduced in two ways. On the one hand, timeouts can be specified, that is, we can express that if an input action is not received before a fix amount of time then the machine will change its state. On the other hand, we can associate time with the performance of actions. In this case, time will be given by means of random variables. Intuitively, we will not have conditions such as “the action a takes t time units to be performed” but conditions such as “the action a will be completed before time t with probability p.” In addition to introducing the new language, we present several conformance relations to relate implementations and specifications that are defined in terms of our new notion of stochastic finite state machine.

Keywords

State Machine Finite State Machine Input Action Process Algebra Stochastic Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. [BG98]
    Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. [BG02]
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282(1), 5–32 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. [BL97]
    Brémond-Grégoire, P., Lee, I.: A process algebra of communicating shared resources with dense time and priorities. Theoretical Computer Science 189(1-2), 179–219 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. [BU91]
    Bosik, B.S., Uyar, M.U.: Finite state machine based formal methods in protocol conformance testing. Computer Networks & ISDN Systems 22, 7–33 (1991)CrossRefGoogle Scholar
  6. [CCV+03]
    Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. [CdAHS03]
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. [CDSY99]
    Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. [CGP00]
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  10. [CL97]
    Clarke, D., Lee, I.: Automatic generation of tests for timing constraints from requirements. In: 3rd Workshop on Object-Oriented Real-Time Dependable Systems (1997)Google Scholar
  11. [DK05]
    D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. [ED03]
    En-Nouaary, A., Dssouli, R.: A guided method for testing timed input output automata. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp. 211–225. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [GSS95]
    van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. [Her98]
    Hermanns, H.: Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg (1998)Google Scholar
  15. [Hil96]
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  16. [HNTC99]
    Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.: Generating test cases for a timed I/O automaton model. In: 12th Workshop on Testing of Communicating Systems, pp. 197–214. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  17. [HR95]
    Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117(2), 221–239 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. [LN01]
    López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. [LNR06]
    López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–3), 228–248 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. [LY96]
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  21. [NR01]
    Núñez, M., Rodríguez, I.: PAMR: A process algebra for the management of resources in concurrent systems. In: Núñez, M., Rodríguez, I. (eds.) FORTE 2001, pp. 169–185. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  22. [NR02]
    Núñez, M., Rodríguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. [NR03]
    Núñez, M., Rodríguez, I.: Towards testing stochastic timed systems. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. [NS91]
    Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)Google Scholar
  25. [Núñ03]
    Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1–2), 117–177 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. [RR88]
    Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)MATHCrossRefMathSciNetGoogle Scholar
  27. [SV03]
    Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. [SVD01]
    Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoretical Computer Science 254(1-2), 225–257 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mercedes G. Merayo
    • 1
  • Manuel Núñez
    • 1
  • Ismael Rodríguez
    • 1
  1. 1.Dept. Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridMadridSpain

Personalised recommendations