Functional Performance Specification with Stochastic Probes

  • Ashok Argent-Katwala
  • Jeremy T. Bradley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4054)


In this paper, we introduce FPS, a mechanism to define performance measures for stochastic process algebra models. FPS is a functional performance specification language which describes passage-time, transient, steady-state and continuous state space performance questions. We present a generalisation of stochastic probes, a formalism-independent specification of behaviour in stochastic process algebra models. Stochastic probes select the performance-critical paths for which the measures are required; increasing their expressiveness in turn gives us greater expressive power to represent performance questions. We end by demonstrating these tools on an RSS syndication architecture of up to 1.5×1051 states.


Regular Expression Functional Performance Process Algebra Performance Query Continuous State Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Obal, W.D., Sanders, W.H.: State-space support for path-based reward variables. Performance Evaluation 35, 233–251 (1999)MATHCrossRefGoogle Scholar
  2. 2.
    Argent-Katwala, A., Bradley, J.T., Dingle, N.J.: Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models. In: Almeida, V., Lea, D. (eds.) WOSP 2004, Proceedings of the 4th International Workshop on Software and Performance, Redwood City, California, pp. 49–58. ACM, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Woodside, C.M., Shramm, C.: Complex performance measurements with NICE (notation for interval combinations and events). Software—Practice and Experience 24, 1121–1144 (1994)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking action- and state-labelled Markov chains. In: DSN 2004, Proceedings of International Conference on Dependable Systems and Networks, pp. 701–710 (June 2004)Google Scholar
  5. 5.
    Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional performance modelling with the TIPPtool. Performance Evaluation 39(1–4), 5–35 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  7. 7.
    Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science, vol. 12. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  8. 8.
    Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Ayles, T., Field, A.J., Magee, J.N.: Adding performance evaluation to the LTSA tool. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler. In: Kotsis, G. (ed.)Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, MASCOTS 2003, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  11. 11.
    Gilmore, S., Hillston, J.: Feature interaction in PEPA. In: Priami, C. (ed.) Process Algebra and Performance Modelling Workshop, Università Degli Studi di Verona, Nice, pp. 17–26 (September 1998)Google Scholar
  12. 12.
    Gilmore, S., Hillston, J., Clark, G.: Specifying performance measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous-time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–162. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems, Torino, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ashok Argent-Katwala
    • 1
  • Jeremy T. Bradley
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUnited Kingdom

Personalised recommendations