A Precedence PEPA Model for Performance and Reliability Analysis

  • Jean-Michel Fourneau
  • Leïla Kloul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4054)


We propose new techniques to simplify the computation of the cycle times and the absorption times for a large class of PEPA models. These techniques allow us to simplify the model description to reduce the number of states of the underlying Markov chain. The simplification processes are associated with stochastic comparisons of random variables. Thus the simplified models are stochastic bounds for the original ones.


Completion Time Directed Acyclic Graph Absorption Time Precedence Model Precedence Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity, an algebra for Discrete Event Systems. Wiley & Sons, Chichester (1992)MATHGoogle Scholar
  2. 2.
    Baccelli, F., Liu, Z.: On the executions of parallel programs on multiprocessor systems - a queueing theory approach. JACM 37(2), 373–414 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baccelli, F., Liu, Z.: Comparison properties of stochastic decision free Petri nets, Inria Report 1433 (1991)Google Scholar
  4. 4.
    Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing (1981)Google Scholar
  5. 5.
    Ben Mamoun, M., Busic, A., Fourneau, J.M., Pekergin, N.: Increasing Convex Monotone Markov Chains: Theory, Algorithm and Applications (submitted)Google Scholar
  6. 6.
    Bobbio, A., Horvath, A., Scarpa, M., Telek, M.: Acyclic Discrete Phase type distributions; properties and a parameter estimation algorithm. Performance evaluation 54, 1–32 (2003)CrossRefGoogle Scholar
  7. 7.
    Bradley, J.T., Dingle, N., Gilmore, S.T., Knottenbelt, W.J.: Extracting Passage Time form PEPA models with the Hydra tool: a case study. In: UKPEW 2003 (2003)Google Scholar
  8. 8.
    Fourneau, J.M., Pekergin, N.: An algorithmic approach to stochastic bounds. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 64–88. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: PEPA nets: A structured performance modelling formalism. Performance Evaluation 54, 79–104 (2003)CrossRefGoogle Scholar
  10. 10.
    Hillston, J.: A compositional Approach to Performance Modelling, PhD Thesis, The University of Edinburgh (1994)Google Scholar
  11. 11.
    Hillston, J., Kloul, L.: An Efficient Kronecker Representation for PEPA Models. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Pekergin, N.: Stochastic delay bounds on fair queueing algorithms. In: Proceedings of INFOCOM 1999, New York, pp. 1212–1220 (1999)Google Scholar
  13. 13.
    Pekergin, N., Vincent, J.M.: Stochastic Bounds on Execution Times of Parallel Programs. IEEE Transactions on Software Engineering 17(17) (October 1991)Google Scholar
  14. 14.
    Stoyan, D.: Comparison Methods for Queues and Other Stochastic Models. Wiley & Sons, New York (1983)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Michel Fourneau
    • 1
  • Leïla Kloul
    • 1
  1. 1.PRiSM, Université de Versailles Saint-QuentinVersaillesFrance

Personalised recommendations