Skip to main content

Competing with Wild Prediction Rules

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

We consider the problem of on-line prediction competitive with a benchmark class of continuous but highly irregular prediction rules. It is known that if the benchmark class is a reproducing kernel Hilbert space, there exists a prediction algorithm whose average loss over the first N examples does not exceed the average loss of any prediction rule in the class plus a “regret term” of O(N − 1/2). The elements of some natural benchmark classes, however, are so irregular that these classes are not Hilbert spaces. In this paper we develop Banach-space methods to construct a prediction algorithm with a regret term of O(N \(^{\rm -1/{\it p}}\)), where p∈(2,∞) and p–2 reflects the degree to which the benchmark class fails to be a Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auer, P., Cesa-Bianchi, N., Gentile, C.: Adaptive and self-confident on-line learning algorithms. Journal of Computer and System Sciences 64, 48–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Transactions on Information Theory 50, 2050–2057 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks 7, 604–619 (1996)

    Article  Google Scholar 

  6. Clarkson, J.A.: Uniformly convex spaces. Transactions of the American Mathematical Society 40, 396–414 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  7. Figiel, T.: On the moduli of convexity and smoothness. Studia Mathematica 56, 121–155 (1976), available free of charge at: http://matwbn.icm.edu.pl

    Google Scholar 

  8. Hanner, O.: On the uniform convexity of L p and l p. Arkiv för Matematik 3, 239–244 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  10. Kivinen, J., Warmuth, M.K.: Exponential Gradient versus Gradient Descent for linear predictors. Information and Computation 132, 1–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933); English translation: Foundations of the theory of probability. Chelsea, New York (1950)

    Google Scholar 

  12. Lindenstrauss, J.: On the modulus of smoothness and divergent series in Banach spaces. Michigan Mathematical Journal 10, 241–252 (1963)

    Article  MathSciNet  Google Scholar 

  13. Liokumovich, V.I.: The existence of B-spaces with non-convex modulus of convexity (in Russian). ИзвестиЯ вьıсших УЧебньІх заведений. Математика 12, 43–50 (1973)

    Google Scholar 

  14. Nikolsky, S.M.: On imbedding, continuation and approximation theorems for differentiable functions of several variables. Russian Mathematical Surveys 16(5), 55–104 (1961), Russian original in: Успехи математических наук 16(5), 63–114 (1961)

    Google Scholar 

  15. Tyrrell Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  16. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, Boston (1991)

    MATH  Google Scholar 

  17. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)

    Book  Google Scholar 

  18. Sorenson, H.W.: Least-squares estimation: from Gauss to Kalman. IEEE Spectrum 7, 63–68 (1970)

    Article  Google Scholar 

  19. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2, 67–93 (2001)

    Article  MathSciNet  Google Scholar 

  20. Vovk, V.: Competing with wild prediction rules. Technical Report arXiv:cs.LG/0512059, arXiv.org., e-Print archive (January 2006)

    Google Scholar 

  21. Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 452–463. Springer, Heidelberg (2006); Full version: Technical Report arXiv:cs.LG/0511058, arXiv.org e-Print archive (January 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vovk, V. (2006). Competing with Wild Prediction Rules. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_41

Download citation

  • DOI: https://doi.org/10.1007/11776420_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics