Advertisement

The Virtual Pheromone Communication Primitive

  • Leo Szumel
  • John D. Owens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4026)

Abstract

We propose a generic communication primitive designed for sensor networks. Our primitive hides details of network communication while retaining sufficient programmer control over the communication behavior of an application; it is designed to ease the burden of writing application-specific communication protocols for efficient, long-lived, fault-tolerant, and scalable applications. While classical network communication methods expect high-reliability links, our primitive works well in highly unreliable environments without needing to detect and prune unreliable links. Our primitive resembles the chemical markers used by many biological systems to solve distributed problems (pheromones). We develop and analyze the performance of an implementation of this primitive called Virtual Pheromone (VP). We demonstrate that VP can attain performance comparable to classical methods for applications such as sleep scheduling, routing, flooding, and cluster formation.

Keywords

Sensor Network Wireless Sensor Network Cluster Head Network Lifetime Node Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E., Culler, D.: The emergence of networking abstractions and techniques in TinyOS. In: Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and Implementation, pp. 1–14 (2004)Google Scholar
  2. 2.
    Goldsmith, A., Wicker, S.B.: Design challenges for energy-constrained ad hoc wireless networks. IEEE wireless communications 9(4), 8–27 (2002)CrossRefGoogle Scholar
  3. 3.
    Levis, P., Gay, D., Handziski, V., Hauer, J.H., Greenstein, B., Turon, M., Hui, J., Klues, K., Sharp, C., Szewczyk, R., Polastre, J., Buonadonna, P., Nachman, L., Tolle, G., Culler, D., Wolisz, A.: T2: A second generation OS for embedded sensor networks. Technical Report TKN-05-007, Telecommunication Networks Group, Technische Universität Berlin (2005)Google Scholar
  4. 4.
    Govindan, R., Kohler, E., Estrin, D., Bian, F., Chintalapudi, K., Gnawali, O., Rangwala, S., Gummadi, R., Stathopoulos, T.: Tenet: An architecture for tiered embedded networks. Technical Report 56, Center for Embedded Networked Sensing (2005)Google Scholar
  5. 5.
    Kuwana, Y., Shimoyama, I., Sayama, Y., Miura, H.: Synthesis of pheromone-oriented emergent behavior of a silkworm moth. In: Proceedings of the International Conference on Intelligent Robots and Systems, vol. 3, pp. 1722–1729 (1996)Google Scholar
  6. 6.
    Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable coordination in sensor networks. In: Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, Washington, USA, pp. 263–270. ACM, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Faruque, J., Helmy, A.: RUGGED: routing on fingerprint gradients in sensor networks. In: The IEEE/ACS International Conference on Pervasive Services, pp. 179–188 (2004)Google Scholar
  8. 8.
    Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. In: Autonomous Robots, pp. 319–324 (2001)Google Scholar
  9. 9.
    Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone learning for self-organizing agents. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 35(3) (2005)Google Scholar
  10. 10.
    Brooks, R., Pirretti, M., Zhu, M., Iyengar, S.: Distributed adaptation methods for wireless sensor networks. In: IEEE Global Telecommunications Conference, vol. 5, pp. 2967–2971 (2003)Google Scholar
  11. 11.
    Szumel, L.: The agent high-level pythonic simulator (Work in progress, 2006)Google Scholar
  12. 12.
    Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In: Proceedings of the First ACM Conference on Embedded Networked Sensor Systems, pp. 126–137 (2003)Google Scholar
  13. 13.
    Szumel, L., LeBrun, J., Owens, J.D.: Towards a mobile agent framework for sensor networks. In: Second IEEE Workshop on Embedded Networked Sensors, pp. 79–87 (2005)Google Scholar
  14. 14.
    Oyman, E.I., Ersoy, C.: Multiple sink network design problem in large scale wireless sensor networks. In: Proceedings of the International Conference on Communications, Paris, France (2004)Google Scholar
  15. 15.
    Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A self-regulating algorithm for code propagation and maintenance in wireless sensor networks. In: Proceedings of First Symposium on Networked Systems Design and Implementation, San Francisco, CA (2004)Google Scholar
  16. 16.
    Ye, F., Zhong, G., Lu, S., Zhang, L.: PEAS: A robust energy conserving protocol for long-lived sensor networks. In: 3rd International Conference on Distributed Computing Systems (2003)Google Scholar
  17. 17.
    Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Imielinski, Korth (eds.) Mobile Computing, vol. 353, Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  18. 18.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocols for wireless microsensor networks. In: International Conference on System Sciences, Maui, HI, pp. 3005–3014 (2000)Google Scholar
  19. 19.
    Han, K.H., Ko, Y.B., Kim, J.H.: A novel gradient approach for efficient data dissemination in wireless sensor networks. In: Proceedings of the International Conference on Vehicular Technology (VTC) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leo Szumel
    • 1
  • John D. Owens
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of California at DavisDavisUSA

Personalised recommendations